Senses along Which the Entropy <i>S<sub>q</sub></i> Is Unique

The Boltzmann–Gibbs–von Neumann–Shannon <i>additive</i> entropy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>S</mi><mrow><mi>B</mi><mi>G&l...

Full description

Bibliographic Details
Main Author: Constantino Tsallis
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/25/5/743
_version_ 1797600215267540992
author Constantino Tsallis
author_facet Constantino Tsallis
author_sort Constantino Tsallis
collection DOAJ
description The Boltzmann–Gibbs–von Neumann–Shannon <i>additive</i> entropy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>S</mi><mrow><mi>B</mi><mi>G</mi></mrow></msub><mo>=</mo><mo>−</mo><mi>k</mi><msub><mo>∑</mo><mi>i</mi></msub><msub><mi>p</mi><mi>i</mi></msub><mo form="prefix">ln</mo><msub><mi>p</mi><mi>i</mi></msub></mrow></semantics></math></inline-formula> as well as its continuous and quantum counterparts, constitute the grounding concept on which the BG statistical mechanics is constructed. This magnificent theory has produced, and will most probably keep producing in the future, successes in vast classes of classical and quantum systems. However, recent decades have seen a proliferation of natural, artificial and social complex systems which defy its bases and make it inapplicable. This paradigmatic theory has been generalized in 1988 into the <i>nonextensive statistical mechanics</i>—as currently referred to—grounded on the <i>nonadditive</i> entropy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>S</mi><mi>q</mi></msub><mo>=</mo><mi>k</mi><mfrac><mrow><mn>1</mn><mo>−</mo><msub><mo>∑</mo><mi>i</mi></msub><msubsup><mi>p</mi><mi>i</mi><mi>q</mi></msubsup></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></semantics></math></inline-formula> as well as its corresponding continuous and quantum counterparts. In the literature, there exist nowadays over fifty mathematically well defined entropic functionals. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>q</mi></msub></semantics></math></inline-formula> plays a special role among them. Indeed, it constitutes the pillar of a great variety of theoretical, experimental, observational and computational validations in the area of complexity—<i>plectics</i>, as Murray Gell-Mann used to call it. Then, a question emerges naturally, namely <i>In what senses is entropy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>q</mi></msub></semantics></math></inline-formula> unique?</i> The present effort is dedicated to a—surely non exhaustive—mathematical answer to this basic question.
first_indexed 2024-03-11T03:46:08Z
format Article
id doaj.art-de3a68dae6e04848b21e7b79272cf0b1
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-11T03:46:08Z
publishDate 2023-05-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-de3a68dae6e04848b21e7b79272cf0b12023-11-18T01:15:45ZengMDPI AGEntropy1099-43002023-05-0125574310.3390/e25050743Senses along Which the Entropy <i>S<sub>q</sub></i> Is UniqueConstantino Tsallis0Centro Brasileiro de Pesquisas Físicas and National Institute of Science and Technology of Complex Systems, Rua Xavier Sigaud 150, Rio de Janeiro 22290-180, RJ, BrazilThe Boltzmann–Gibbs–von Neumann–Shannon <i>additive</i> entropy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>S</mi><mrow><mi>B</mi><mi>G</mi></mrow></msub><mo>=</mo><mo>−</mo><mi>k</mi><msub><mo>∑</mo><mi>i</mi></msub><msub><mi>p</mi><mi>i</mi></msub><mo form="prefix">ln</mo><msub><mi>p</mi><mi>i</mi></msub></mrow></semantics></math></inline-formula> as well as its continuous and quantum counterparts, constitute the grounding concept on which the BG statistical mechanics is constructed. This magnificent theory has produced, and will most probably keep producing in the future, successes in vast classes of classical and quantum systems. However, recent decades have seen a proliferation of natural, artificial and social complex systems which defy its bases and make it inapplicable. This paradigmatic theory has been generalized in 1988 into the <i>nonextensive statistical mechanics</i>—as currently referred to—grounded on the <i>nonadditive</i> entropy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>S</mi><mi>q</mi></msub><mo>=</mo><mi>k</mi><mfrac><mrow><mn>1</mn><mo>−</mo><msub><mo>∑</mo><mi>i</mi></msub><msubsup><mi>p</mi><mi>i</mi><mi>q</mi></msubsup></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></semantics></math></inline-formula> as well as its corresponding continuous and quantum counterparts. In the literature, there exist nowadays over fifty mathematically well defined entropic functionals. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>q</mi></msub></semantics></math></inline-formula> plays a special role among them. Indeed, it constitutes the pillar of a great variety of theoretical, experimental, observational and computational validations in the area of complexity—<i>plectics</i>, as Murray Gell-Mann used to call it. Then, a question emerges naturally, namely <i>In what senses is entropy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>S</mi><mi>q</mi></msub></semantics></math></inline-formula> unique?</i> The present effort is dedicated to a—surely non exhaustive—mathematical answer to this basic question.https://www.mdpi.com/1099-4300/25/5/743Boltzmann–Gibbs statistical mechanicsnonadditive entropiesnonextensive statistical mechanicsentropic uniqueness theorems
spellingShingle Constantino Tsallis
Senses along Which the Entropy <i>S<sub>q</sub></i> Is Unique
Entropy
Boltzmann–Gibbs statistical mechanics
nonadditive entropies
nonextensive statistical mechanics
entropic uniqueness theorems
title Senses along Which the Entropy <i>S<sub>q</sub></i> Is Unique
title_full Senses along Which the Entropy <i>S<sub>q</sub></i> Is Unique
title_fullStr Senses along Which the Entropy <i>S<sub>q</sub></i> Is Unique
title_full_unstemmed Senses along Which the Entropy <i>S<sub>q</sub></i> Is Unique
title_short Senses along Which the Entropy <i>S<sub>q</sub></i> Is Unique
title_sort senses along which the entropy i s sub q sub i is unique
topic Boltzmann–Gibbs statistical mechanics
nonadditive entropies
nonextensive statistical mechanics
entropic uniqueness theorems
url https://www.mdpi.com/1099-4300/25/5/743
work_keys_str_mv AT constantinotsallis sensesalongwhichtheentropyissubqsubiisunique