On Simple Singular N-Flat Modules

Let I be a right ideal of a ring R , then R/I is right N-flat module if and only if for each , there exists  and a positive integer n such that  and  .In this paper, we first introduce and characterize rings whose every simple singular right R-module is N - flat. Next, we investigate the strong regu...

Full description

Bibliographic Details
Main Authors: Raida Mahmood, Dina Hadid
Format: Article
Language:Arabic
Published: Mosul University 2013-09-01
Series:Al-Rafidain Journal of Computer Sciences and Mathematics
Subjects:
Online Access:https://csmj.mosuljournals.com/article_163522_7b64d0262df24eaca978b2ed65119ab0.pdf
Description
Summary:Let I be a right ideal of a ring R , then R/I is right N-flat module if and only if for each , there exists  and a positive integer n such that  and  .In this paper, we first introduce and characterize rings whose every simple singular right R-module is N - flat. Next, we investigate the strong regularity of rings whose every  simple singular right R - module is N-flat. It is proved that : R is strongly regular ring if and only if R is a wjc , MERT and  2 - primal ring whose simple singular right R- module is N - flat. Let R be  a wjc ring satisfying condition (*). If every simple singular right R-module is  N-flat .Then, the Center of R is a regular ring.
ISSN:1815-4816
2311-7990