Validation of the Aeolus L2B wind product with airborne wind lidar measurements in the polar North Atlantic region and in the tropics

<p>During the first 3 years of the European Space Agency's Aeolus mission, the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt, DLR) performed four airborne campaigns deploying two different Doppler wind lidars (DWL) on board the DLR Falcon aircraft, aiming to validate...

Full description

Bibliographic Details
Main Authors: B. Witschas, C. Lemmerz, A. Geiß, O. Lux, U. Marksteiner, S. Rahm, O. Reitebuch, A. Schäfler, F. Weiler
Format: Article
Language:English
Published: Copernicus Publications 2022-12-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/15/7049/2022/amt-15-7049-2022.pdf
_version_ 1828091333515935744
author B. Witschas
C. Lemmerz
A. Geiß
O. Lux
U. Marksteiner
S. Rahm
O. Reitebuch
A. Schäfler
F. Weiler
author_facet B. Witschas
C. Lemmerz
A. Geiß
O. Lux
U. Marksteiner
S. Rahm
O. Reitebuch
A. Schäfler
F. Weiler
author_sort B. Witschas
collection DOAJ
description <p>During the first 3 years of the European Space Agency's Aeolus mission, the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt, DLR) performed four airborne campaigns deploying two different Doppler wind lidars (DWL) on board the DLR Falcon aircraft, aiming to validate the quality of the recent Aeolus Level 2B (L2B) wind data product (processor baseline 11 and 12). The first two campaigns, WindVal III (November–December 2018) and AVATAR-E (Aeolus Validation Through Airborne Lidars in Europe, May and June 2019), were conducted in Europe and provided first insights into the data quality at the beginning of the mission phase. The two later campaigns, AVATAR-I (Aeolus Validation Through Airborne Lidars in Iceland) and AVATAR-T (Aeolus Validation Through Airborne Lidars in the Tropics), were performed in regions of particular interest for the Aeolus validation: AVATAR-I was conducted from Keflavik, Iceland, between 9 September and 1 October 2019 to sample the high wind speeds in the vicinity of the polar jet stream; AVATAR-T was carried out from Sal, Cape Verde, between 6 and 28 September 2021 to measure winds in the Saharan dust-laden African easterly jet. Altogether, 10 Aeolus underflights were performed during AVATAR-I and 11 underflights during AVATAR-T, covering about 8000 and 11 000 km along the Aeolus measurement track, respectively. Based on these collocated measurements, statistical comparisons of Aeolus data with the reference lidar (2 <span class="inline-formula">µ</span>m DWL) as well as with in situ measurements by the Falcon were performed to determine the systematic and random errors of Rayleigh-clear and Mie-cloudy winds that are contained in the Aeolus L2B product. It is demonstrated that the systematic error almost fulfills the mission requirement of being below <span class="inline-formula">0.7</span> m s<span class="inline-formula"><sup>−1</sup></span> for both Rayleigh-clear and Mie-cloudy winds. The random error is shown to vary between <span class="inline-formula">5.5</span> and <span class="inline-formula">7.1</span> m s<span class="inline-formula"><sup>−1</sup></span> for Rayleigh-clear winds and is thus larger than specified (<span class="inline-formula">2.5</span> m s<span class="inline-formula"><sup>−1</sup></span>), whereas it is close to the specifications for Mie-cloudy winds (<span class="inline-formula">2.7 to 2.9</span> m s<span class="inline-formula"><sup>−1</sup></span>). In addition, the dependency of the systematic and random errors on the actual wind speed, the geolocation, the scattering ratio, and the time difference between 2 <span class="inline-formula">µ</span>m DWL observation and satellite overflight is investigated and discussed. Thus, this work contributes to the characterization of the Aeolus data quality in different meteorological situations and allows one to investigate wind retrieval algorithm improvements for reprocessed Aeolus data sets.</p>
first_indexed 2024-04-11T06:11:19Z
format Article
id doaj.art-de54ce6bccc2494f9b7e64576b2f63de
institution Directory Open Access Journal
issn 1867-1381
1867-8548
language English
last_indexed 2024-04-11T06:11:19Z
publishDate 2022-12-01
publisher Copernicus Publications
record_format Article
series Atmospheric Measurement Techniques
spelling doaj.art-de54ce6bccc2494f9b7e64576b2f63de2022-12-22T04:41:15ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482022-12-01157049707010.5194/amt-15-7049-2022Validation of the Aeolus L2B wind product with airborne wind lidar measurements in the polar North Atlantic region and in the tropicsB. Witschas0C. Lemmerz1A. Geiß2O. Lux3U. Marksteiner4S. Rahm5O. Reitebuch6A. Schäfler7F. Weiler8Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), 82234 Oberpfaffenhofen, GermanyInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), 82234 Oberpfaffenhofen, GermanyMeteorologisches Institut, Ludwig-Maximilians-Universität, 80333 Munich, GermanyInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), 82234 Oberpfaffenhofen, GermanyInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), 82234 Oberpfaffenhofen, GermanyInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), 82234 Oberpfaffenhofen, GermanyInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), 82234 Oberpfaffenhofen, GermanyInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), 82234 Oberpfaffenhofen, GermanyInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), 82234 Oberpfaffenhofen, Germany<p>During the first 3 years of the European Space Agency's Aeolus mission, the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt, DLR) performed four airborne campaigns deploying two different Doppler wind lidars (DWL) on board the DLR Falcon aircraft, aiming to validate the quality of the recent Aeolus Level 2B (L2B) wind data product (processor baseline 11 and 12). The first two campaigns, WindVal III (November–December 2018) and AVATAR-E (Aeolus Validation Through Airborne Lidars in Europe, May and June 2019), were conducted in Europe and provided first insights into the data quality at the beginning of the mission phase. The two later campaigns, AVATAR-I (Aeolus Validation Through Airborne Lidars in Iceland) and AVATAR-T (Aeolus Validation Through Airborne Lidars in the Tropics), were performed in regions of particular interest for the Aeolus validation: AVATAR-I was conducted from Keflavik, Iceland, between 9 September and 1 October 2019 to sample the high wind speeds in the vicinity of the polar jet stream; AVATAR-T was carried out from Sal, Cape Verde, between 6 and 28 September 2021 to measure winds in the Saharan dust-laden African easterly jet. Altogether, 10 Aeolus underflights were performed during AVATAR-I and 11 underflights during AVATAR-T, covering about 8000 and 11 000 km along the Aeolus measurement track, respectively. Based on these collocated measurements, statistical comparisons of Aeolus data with the reference lidar (2 <span class="inline-formula">µ</span>m DWL) as well as with in situ measurements by the Falcon were performed to determine the systematic and random errors of Rayleigh-clear and Mie-cloudy winds that are contained in the Aeolus L2B product. It is demonstrated that the systematic error almost fulfills the mission requirement of being below <span class="inline-formula">0.7</span> m s<span class="inline-formula"><sup>−1</sup></span> for both Rayleigh-clear and Mie-cloudy winds. The random error is shown to vary between <span class="inline-formula">5.5</span> and <span class="inline-formula">7.1</span> m s<span class="inline-formula"><sup>−1</sup></span> for Rayleigh-clear winds and is thus larger than specified (<span class="inline-formula">2.5</span> m s<span class="inline-formula"><sup>−1</sup></span>), whereas it is close to the specifications for Mie-cloudy winds (<span class="inline-formula">2.7 to 2.9</span> m s<span class="inline-formula"><sup>−1</sup></span>). In addition, the dependency of the systematic and random errors on the actual wind speed, the geolocation, the scattering ratio, and the time difference between 2 <span class="inline-formula">µ</span>m DWL observation and satellite overflight is investigated and discussed. Thus, this work contributes to the characterization of the Aeolus data quality in different meteorological situations and allows one to investigate wind retrieval algorithm improvements for reprocessed Aeolus data sets.</p>https://amt.copernicus.org/articles/15/7049/2022/amt-15-7049-2022.pdf
spellingShingle B. Witschas
C. Lemmerz
A. Geiß
O. Lux
U. Marksteiner
S. Rahm
O. Reitebuch
A. Schäfler
F. Weiler
Validation of the Aeolus L2B wind product with airborne wind lidar measurements in the polar North Atlantic region and in the tropics
Atmospheric Measurement Techniques
title Validation of the Aeolus L2B wind product with airborne wind lidar measurements in the polar North Atlantic region and in the tropics
title_full Validation of the Aeolus L2B wind product with airborne wind lidar measurements in the polar North Atlantic region and in the tropics
title_fullStr Validation of the Aeolus L2B wind product with airborne wind lidar measurements in the polar North Atlantic region and in the tropics
title_full_unstemmed Validation of the Aeolus L2B wind product with airborne wind lidar measurements in the polar North Atlantic region and in the tropics
title_short Validation of the Aeolus L2B wind product with airborne wind lidar measurements in the polar North Atlantic region and in the tropics
title_sort validation of the aeolus l2b wind product with airborne wind lidar measurements in the polar north atlantic region and in the tropics
url https://amt.copernicus.org/articles/15/7049/2022/amt-15-7049-2022.pdf
work_keys_str_mv AT bwitschas validationoftheaeolusl2bwindproductwithairbornewindlidarmeasurementsinthepolarnorthatlanticregionandinthetropics
AT clemmerz validationoftheaeolusl2bwindproductwithairbornewindlidarmeasurementsinthepolarnorthatlanticregionandinthetropics
AT ageiß validationoftheaeolusl2bwindproductwithairbornewindlidarmeasurementsinthepolarnorthatlanticregionandinthetropics
AT olux validationoftheaeolusl2bwindproductwithairbornewindlidarmeasurementsinthepolarnorthatlanticregionandinthetropics
AT umarksteiner validationoftheaeolusl2bwindproductwithairbornewindlidarmeasurementsinthepolarnorthatlanticregionandinthetropics
AT srahm validationoftheaeolusl2bwindproductwithairbornewindlidarmeasurementsinthepolarnorthatlanticregionandinthetropics
AT oreitebuch validationoftheaeolusl2bwindproductwithairbornewindlidarmeasurementsinthepolarnorthatlanticregionandinthetropics
AT aschafler validationoftheaeolusl2bwindproductwithairbornewindlidarmeasurementsinthepolarnorthatlanticregionandinthetropics
AT fweiler validationoftheaeolusl2bwindproductwithairbornewindlidarmeasurementsinthepolarnorthatlanticregionandinthetropics