A High–Order WENO Scheme Based on Different Numerical Fluxes for the Savage–Hutter Equations

The study of rapid free surface granular avalanche flows has attracted much attention in recent years, which is widely modeled using the Savage–Hutter equations. The model is closely related to shallow water equations. We employ a high-order shock-capturing numerical model based on the weighted esse...

Full description

Bibliographic Details
Main Authors: Min Wang, Xiaohua Zhang
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/9/1482
Description
Summary:The study of rapid free surface granular avalanche flows has attracted much attention in recent years, which is widely modeled using the Savage–Hutter equations. The model is closely related to shallow water equations. We employ a high-order shock-capturing numerical model based on the weighted essential non-oscillatory (WENO) reconstruction method for solving Savage–Hutter equations. Three numerical fluxes, i.e., Lax–Friedrichs (LF), Harten–Lax–van Leer (HLL), and HLL contact (HLLC) numerical fluxes, are considered with the WENO finite volume method and TVD Runge–Kutta time discretization for the Savage–Hutter equations. Numerical examples in 1D and 2D space are presented to compare the resolution of shock waves and free surface capture. The numerical results show that the method proposed provides excellent performance with high accuracy and robustness.
ISSN:2227-7390