THE FREE ENERGY OF THE TWO-DIMENSIONAL DILUTE BOSE GAS. I. LOWER BOUND
We prove a lower bound for the free energy (per unit volume) of the two-dimensional Bose gas in the thermodynamic limit. We show that the free energy at density $\unicode[STIX]{x1D70C}$ and inverse temperature $\unicode[STIX]{x1D6FD}$ differs from the one of the noninteracting system by the correct...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Cambridge University Press
2020-01-01
|
Series: | Forum of Mathematics, Sigma |
Subjects: | |
Online Access: | https://www.cambridge.org/core/product/identifier/S2050509420000171/type/journal_article |
_version_ | 1811156207740649472 |
---|---|
author | ANDREAS DEUCHERT SIMON MAYER ROBERT SEIRINGER |
author_facet | ANDREAS DEUCHERT SIMON MAYER ROBERT SEIRINGER |
author_sort | ANDREAS DEUCHERT |
collection | DOAJ |
description | We prove a lower bound for the free energy (per unit volume) of the two-dimensional Bose gas in the thermodynamic limit. We show that the free energy at density $\unicode[STIX]{x1D70C}$ and inverse temperature $\unicode[STIX]{x1D6FD}$ differs from the one of the noninteracting system by the correction term $4\unicode[STIX]{x1D70B}\unicode[STIX]{x1D70C}^{2}|\ln \,a^{2}\unicode[STIX]{x1D70C}|^{-1}(2-[1-\unicode[STIX]{x1D6FD}_{\text{c}}/\unicode[STIX]{x1D6FD}]_{+}^{2})$. Here, $a$ is the scattering length of the interaction potential, $[\cdot ]_{+}=\max \{0,\cdot \}$ and $\unicode[STIX]{x1D6FD}_{\text{c}}$ is the inverse Berezinskii–Kosterlitz–Thouless critical temperature for superfluidity. The result is valid in the dilute limit $a^{2}\unicode[STIX]{x1D70C}\ll 1$ and if $\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D70C}\gtrsim 1$. |
first_indexed | 2024-04-10T04:47:40Z |
format | Article |
id | doaj.art-de68c42ae33040ca9b003cc5c438a89c |
institution | Directory Open Access Journal |
issn | 2050-5094 |
language | English |
last_indexed | 2024-04-10T04:47:40Z |
publishDate | 2020-01-01 |
publisher | Cambridge University Press |
record_format | Article |
series | Forum of Mathematics, Sigma |
spelling | doaj.art-de68c42ae33040ca9b003cc5c438a89c2023-03-09T12:34:47ZengCambridge University PressForum of Mathematics, Sigma2050-50942020-01-01810.1017/fms.2020.17THE FREE ENERGY OF THE TWO-DIMENSIONAL DILUTE BOSE GAS. I. LOWER BOUNDANDREAS DEUCHERT0https://orcid.org/0000-0003-3146-6746SIMON MAYER1ROBERT SEIRINGER2https://orcid.org/0000-0002-6781-0521Institute of Mathematics, University of Zurich, Winterthurerstrasse 190, 8057Zurich, Switzerland; Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400Klosterneuburg, Austria; ,Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400Klosterneuburg, Austria; ,Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400Klosterneuburg, Austria; ,We prove a lower bound for the free energy (per unit volume) of the two-dimensional Bose gas in the thermodynamic limit. We show that the free energy at density $\unicode[STIX]{x1D70C}$ and inverse temperature $\unicode[STIX]{x1D6FD}$ differs from the one of the noninteracting system by the correction term $4\unicode[STIX]{x1D70B}\unicode[STIX]{x1D70C}^{2}|\ln \,a^{2}\unicode[STIX]{x1D70C}|^{-1}(2-[1-\unicode[STIX]{x1D6FD}_{\text{c}}/\unicode[STIX]{x1D6FD}]_{+}^{2})$. Here, $a$ is the scattering length of the interaction potential, $[\cdot ]_{+}=\max \{0,\cdot \}$ and $\unicode[STIX]{x1D6FD}_{\text{c}}$ is the inverse Berezinskii–Kosterlitz–Thouless critical temperature for superfluidity. The result is valid in the dilute limit $a^{2}\unicode[STIX]{x1D70C}\ll 1$ and if $\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D70C}\gtrsim 1$.https://www.cambridge.org/core/product/identifier/S2050509420000171/type/journal_article16W1016D50 |
spellingShingle | ANDREAS DEUCHERT SIMON MAYER ROBERT SEIRINGER THE FREE ENERGY OF THE TWO-DIMENSIONAL DILUTE BOSE GAS. I. LOWER BOUND Forum of Mathematics, Sigma 16W10 16D50 |
title | THE FREE ENERGY OF THE TWO-DIMENSIONAL DILUTE BOSE GAS. I. LOWER BOUND |
title_full | THE FREE ENERGY OF THE TWO-DIMENSIONAL DILUTE BOSE GAS. I. LOWER BOUND |
title_fullStr | THE FREE ENERGY OF THE TWO-DIMENSIONAL DILUTE BOSE GAS. I. LOWER BOUND |
title_full_unstemmed | THE FREE ENERGY OF THE TWO-DIMENSIONAL DILUTE BOSE GAS. I. LOWER BOUND |
title_short | THE FREE ENERGY OF THE TWO-DIMENSIONAL DILUTE BOSE GAS. I. LOWER BOUND |
title_sort | free energy of the two dimensional dilute bose gas i lower bound |
topic | 16W10 16D50 |
url | https://www.cambridge.org/core/product/identifier/S2050509420000171/type/journal_article |
work_keys_str_mv | AT andreasdeuchert thefreeenergyofthetwodimensionaldilutebosegasilowerbound AT simonmayer thefreeenergyofthetwodimensionaldilutebosegasilowerbound AT robertseiringer thefreeenergyofthetwodimensionaldilutebosegasilowerbound AT andreasdeuchert freeenergyofthetwodimensionaldilutebosegasilowerbound AT simonmayer freeenergyofthetwodimensionaldilutebosegasilowerbound AT robertseiringer freeenergyofthetwodimensionaldilutebosegasilowerbound |