Optimal Configuration of Energy Storage Systems in High PV Penetrating Distribution Network

In this paper, a method for rationally allocating energy storage capacity in a high-permeability distribution network is proposed. By constructing a bi-level programming model, the optimal capacity of energy storage connected to the distribution network is allocated by considering the operating cost...

Full description

Bibliographic Details
Main Authors: Jinhua Zhang, Liding Zhu, Shengchao Zhao, Jie Yan, Lingling Lv
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/16/5/2168
Description
Summary:In this paper, a method for rationally allocating energy storage capacity in a high-permeability distribution network is proposed. By constructing a bi-level programming model, the optimal capacity of energy storage connected to the distribution network is allocated by considering the operating cost, load fluctuation, and battery charging and discharging strategy. By constructing four scenarios with energy storage in the distribution network with a photovoltaic permeability of 29%, it was found that the bi-level decision-making model proposed in this paper saves 2346.66 yuan and 2055.05 yuan, respectively, in daily operation cost compared to the scenario without energy storage and the scenario with single-layer energy storage. After accessing IEEE-33 nodes for simulation verification, it was found that the bi-level decision-making model proposed in this paper has a good inhibition effect on voltage fluctuation and load fluctuation after energy storage configuration. In addition, this paper analyzes the energy storage that can be accessed by photovoltaic distribution networks with different permeability and finds that when photovoltaic permeability reaches 45% and corresponding energy storage is configured, the economic and energy storage benefits of the system are the best.
ISSN:1996-1073