Hermite-Hadamard, Fejér and trapezoid type inequalities using Godunova-Levin Preinvex functions via Bhunia's order and with applications to quadrature formula and random variable

Convex and preinvex functions are two different concepts. Specifically, preinvex functions are generalizations of convex functions. We created some intriguing examples to demonstrate how these classes differ from one another. We showed that Godunova-Levin invex sets are always convex but the convers...

Full description

Bibliographic Details
Main Authors: Waqar Afzal, Najla M. Aloraini, Mujahid Abbas, Jong-Suk Ro, Abdullah A. Zaagan
Format: Article
Language:English
Published: AIMS Press 2024-02-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2024151https://www.aimspress.com/article/doi/10.3934/mbe.2024151
Description
Summary:Convex and preinvex functions are two different concepts. Specifically, preinvex functions are generalizations of convex functions. We created some intriguing examples to demonstrate how these classes differ from one another. We showed that Godunova-Levin invex sets are always convex but the converse is not always true. In this note, we present a new class of preinvex functions called $ (\mathtt{h_1}, \mathtt{h_2}) $-Godunova-Levin preinvex functions, which is extensions of $ \mathtt{h} $-Godunova-Levin preinvex functions defined by Adem Kilicman. By using these notions, we initially developed Hermite-Hadamard and Fejér type results. Next, we used trapezoid type results to connect our inequality to the well-known numerical quadrature trapezoidal type formula for finding error bounds by limiting to standard order relations. Additionally, we use the probability density function to relate trapezoid type results for random variable error bounds. In addition to these developed results, several non-trivial examples have been provided as proofs.
ISSN:1551-0018