Characterization of Non-Linear Bi-Skew Jordan <i>n</i>-Derivations on Prime ∗-Algebras

Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">A</mi></semantics></math></inline-formula> be a prime *-algebra. A product defined as <inline-fo...

Full description

Bibliographic Details
Main Authors: Asma Ali, Amal S. Alali, Mohd Tasleem
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/8/753
_version_ 1797585566019092480
author Asma Ali
Amal S. Alali
Mohd Tasleem
author_facet Asma Ali
Amal S. Alali
Mohd Tasleem
author_sort Asma Ali
collection DOAJ
description Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">A</mi></semantics></math></inline-formula> be a prime *-algebra. A product defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>U</mi><mo>•</mo><mi>V</mi><mo>=</mo><mi>U</mi><msup><mi>V</mi><mo>∗</mo></msup><mo>+</mo><mi>V</mi><msup><mi>U</mi><mo>∗</mo></msup></mrow></semantics></math></inline-formula> for any <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>U</mi><mo>,</mo><mi>V</mi><mo>∈</mo><mi mathvariant="fraktur">A</mi></mrow></semantics></math></inline-formula>, is called a bi-skew Jordan product. A map <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ξ</mi><mo>:</mo><mi mathvariant="fraktur">A</mi><mo>→</mo><mi mathvariant="fraktur">A</mi></mrow></semantics></math></inline-formula>, defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ξ</mi><mfenced separators="" open="(" close=")"><msub><mi>p</mi><mi>n</mi></msub><mfenced separators="" open="(" close=")"><msub><mi>U</mi><mn>1</mn></msub><mo>,</mo><msub><mi>U</mi><mn>2</mn></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mi>U</mi><mi>n</mi></msub></mfenced></mfenced><mo>=</mo><msubsup><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mi>p</mi><mi>n</mi></msub><mfenced separators="" open="(" close=")"><msub><mi>U</mi><mn>1</mn></msub><mo>,</mo><msub><mi>U</mi><mn>2</mn></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>U</mi><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>,</mo><mi>ξ</mi><mrow><mo>(</mo><msub><mi>U</mi><mi>k</mi></msub><mo>)</mo></mrow><mo>,</mo><msub><mi>U</mi><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mi>U</mi><mi>n</mi></msub></mfenced></mrow></semantics></math></inline-formula> for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo>,</mo><msub><mi>U</mi><mn>2</mn></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>U</mi><mi>n</mi></msub><mo>∈</mo><mi mathvariant="fraktur">A</mi></mrow></semantics></math></inline-formula>, is called a non-linear bi-skew Jordan <i>n</i>-derivation. In this article, it is shown that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> is an additive ∗-derivation.
first_indexed 2024-03-11T00:07:57Z
format Article
id doaj.art-de9561e4cd714d3fa100c9171f0af0b4
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-11T00:07:57Z
publishDate 2023-07-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-de9561e4cd714d3fa100c9171f0af0b42023-11-19T00:14:43ZengMDPI AGAxioms2075-16802023-07-0112875310.3390/axioms12080753Characterization of Non-Linear Bi-Skew Jordan <i>n</i>-Derivations on Prime ∗-AlgebrasAsma Ali0Amal S. Alali1Mohd Tasleem2Department of Mathematics, Aligarh Muslim University, Aligarh 202002, IndiaDepartment of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi ArabiaDepartment of Mathematics, Aligarh Muslim University, Aligarh 202002, IndiaLet <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">A</mi></semantics></math></inline-formula> be a prime *-algebra. A product defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>U</mi><mo>•</mo><mi>V</mi><mo>=</mo><mi>U</mi><msup><mi>V</mi><mo>∗</mo></msup><mo>+</mo><mi>V</mi><msup><mi>U</mi><mo>∗</mo></msup></mrow></semantics></math></inline-formula> for any <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>U</mi><mo>,</mo><mi>V</mi><mo>∈</mo><mi mathvariant="fraktur">A</mi></mrow></semantics></math></inline-formula>, is called a bi-skew Jordan product. A map <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ξ</mi><mo>:</mo><mi mathvariant="fraktur">A</mi><mo>→</mo><mi mathvariant="fraktur">A</mi></mrow></semantics></math></inline-formula>, defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ξ</mi><mfenced separators="" open="(" close=")"><msub><mi>p</mi><mi>n</mi></msub><mfenced separators="" open="(" close=")"><msub><mi>U</mi><mn>1</mn></msub><mo>,</mo><msub><mi>U</mi><mn>2</mn></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mi>U</mi><mi>n</mi></msub></mfenced></mfenced><mo>=</mo><msubsup><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mi>p</mi><mi>n</mi></msub><mfenced separators="" open="(" close=")"><msub><mi>U</mi><mn>1</mn></msub><mo>,</mo><msub><mi>U</mi><mn>2</mn></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>U</mi><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>,</mo><mi>ξ</mi><mrow><mo>(</mo><msub><mi>U</mi><mi>k</mi></msub><mo>)</mo></mrow><mo>,</mo><msub><mi>U</mi><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mi>U</mi><mi>n</mi></msub></mfenced></mrow></semantics></math></inline-formula> for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo>,</mo><msub><mi>U</mi><mn>2</mn></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>U</mi><mi>n</mi></msub><mo>∈</mo><mi mathvariant="fraktur">A</mi></mrow></semantics></math></inline-formula>, is called a non-linear bi-skew Jordan <i>n</i>-derivation. In this article, it is shown that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> is an additive ∗-derivation.https://www.mdpi.com/2075-1680/12/8/753∗-derivationbi-skew Jordan n-derivationprime ∗-algebras
spellingShingle Asma Ali
Amal S. Alali
Mohd Tasleem
Characterization of Non-Linear Bi-Skew Jordan <i>n</i>-Derivations on Prime ∗-Algebras
Axioms
∗-derivation
bi-skew Jordan n-derivation
prime ∗-algebras
title Characterization of Non-Linear Bi-Skew Jordan <i>n</i>-Derivations on Prime ∗-Algebras
title_full Characterization of Non-Linear Bi-Skew Jordan <i>n</i>-Derivations on Prime ∗-Algebras
title_fullStr Characterization of Non-Linear Bi-Skew Jordan <i>n</i>-Derivations on Prime ∗-Algebras
title_full_unstemmed Characterization of Non-Linear Bi-Skew Jordan <i>n</i>-Derivations on Prime ∗-Algebras
title_short Characterization of Non-Linear Bi-Skew Jordan <i>n</i>-Derivations on Prime ∗-Algebras
title_sort characterization of non linear bi skew jordan i n i derivations on prime ∗ algebras
topic ∗-derivation
bi-skew Jordan n-derivation
prime ∗-algebras
url https://www.mdpi.com/2075-1680/12/8/753
work_keys_str_mv AT asmaali characterizationofnonlinearbiskewjordaniniderivationsonprimealgebras
AT amalsalali characterizationofnonlinearbiskewjordaniniderivationsonprimealgebras
AT mohdtasleem characterizationofnonlinearbiskewjordaniniderivationsonprimealgebras