On Non-Zero Vertex Signed Domination

For a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo stretchy="false">(</mo><mi>V</mi><mo>,</mo><mi&g...

Full description

Bibliographic Details
Main Authors: Baogen Xu, Mengmeng Zheng, Ting Lan
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/3/741
_version_ 1797608876066996224
author Baogen Xu
Mengmeng Zheng
Ting Lan
author_facet Baogen Xu
Mengmeng Zheng
Ting Lan
author_sort Baogen Xu
collection DOAJ
description For a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo stretchy="false">(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> and a function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mo>→</mo><mrow><mo>{</mo><mrow><mo>−</mo><mn>1</mn><mo>,</mo><mo>+</mo><mn>1</mn></mrow><mo>}</mo></mrow></mrow></semantics></math></inline-formula>, if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi></mrow></semantics></math></inline-formula> then we write <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>=</mo><mstyle displaystyle="true"><munder><mo>∑</mo><mrow><mi>v</mi><mo>∈</mo><mi>S</mi></mrow></munder><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>v</mi><mo stretchy="false">)</mo></mrow></mstyle></mrow></semantics></math></inline-formula>. A function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>f</mi></semantics></math></inline-formula> is said to be a non-zero vertex signed dominating function (for short, NVSDF) of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>G</mi></semantics></math></inline-formula> if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>N</mi><mrow><mo>[</mo><mi>v</mi><mo>]</mo></mrow><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> holds for every vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>v</mi></semantics></math></inline-formula> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>G</mi></semantics></math></inline-formula>, and the non-zero vertex signed domination number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>G</mi></semantics></math></inline-formula> is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>s</mi><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>max</mi><mrow><mo>{</mo><mrow><mi>f</mi><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow><mrow><mo>|</mo><mrow><mrow><mi>f</mi><mo> </mo><mi>is</mi><mo> </mo><mi>an</mi><mo> </mo><mi>NVSDF</mi><mo> </mo><mi>of</mi><mo> </mo></mrow><mi>G</mi></mrow></mrow></mrow><mo>}</mo></mrow><mo>.</mo></mrow></semantics></math></inline-formula> In this paper, the novel concept of the non-zero vertex signed domination for graphs is introduced. There is also a special symmetry concept in graphs. Some upper bounds of the non-zero vertex signed domination number of a graph are given. The exact value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>s</mi><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for several special classes of graphs is determined. Finally, we pose some open problems.
first_indexed 2024-03-11T05:50:40Z
format Article
id doaj.art-de9660ffb22a438b87f2843e315de0fe
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-11T05:50:40Z
publishDate 2023-03-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-de9660ffb22a438b87f2843e315de0fe2023-11-17T14:10:20ZengMDPI AGSymmetry2073-89942023-03-0115374110.3390/sym15030741On Non-Zero Vertex Signed DominationBaogen Xu0Mengmeng Zheng1Ting Lan2School of Mathematics, East China Jiaotong University, Nanchang 330013, ChinaSchool of Mathematics, East China Jiaotong University, Nanchang 330013, ChinaSchool of Mathematics, East China Jiaotong University, Nanchang 330013, ChinaFor a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo stretchy="false">(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> and a function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mo>→</mo><mrow><mo>{</mo><mrow><mo>−</mo><mn>1</mn><mo>,</mo><mo>+</mo><mn>1</mn></mrow><mo>}</mo></mrow></mrow></semantics></math></inline-formula>, if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi></mrow></semantics></math></inline-formula> then we write <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>=</mo><mstyle displaystyle="true"><munder><mo>∑</mo><mrow><mi>v</mi><mo>∈</mo><mi>S</mi></mrow></munder><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>v</mi><mo stretchy="false">)</mo></mrow></mstyle></mrow></semantics></math></inline-formula>. A function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>f</mi></semantics></math></inline-formula> is said to be a non-zero vertex signed dominating function (for short, NVSDF) of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>G</mi></semantics></math></inline-formula> if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>N</mi><mrow><mo>[</mo><mi>v</mi><mo>]</mo></mrow><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> holds for every vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>v</mi></semantics></math></inline-formula> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>G</mi></semantics></math></inline-formula>, and the non-zero vertex signed domination number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>G</mi></semantics></math></inline-formula> is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>s</mi><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>max</mi><mrow><mo>{</mo><mrow><mi>f</mi><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow><mrow><mo>|</mo><mrow><mrow><mi>f</mi><mo> </mo><mi>is</mi><mo> </mo><mi>an</mi><mo> </mo><mi>NVSDF</mi><mo> </mo><mi>of</mi><mo> </mo></mrow><mi>G</mi></mrow></mrow></mrow><mo>}</mo></mrow><mo>.</mo></mrow></semantics></math></inline-formula> In this paper, the novel concept of the non-zero vertex signed domination for graphs is introduced. There is also a special symmetry concept in graphs. Some upper bounds of the non-zero vertex signed domination number of a graph are given. The exact value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>s</mi><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for several special classes of graphs is determined. Finally, we pose some open problems.https://www.mdpi.com/2073-8994/15/3/741graphnon-zero vertex signed dominationnon-zero vertex signed domination number
spellingShingle Baogen Xu
Mengmeng Zheng
Ting Lan
On Non-Zero Vertex Signed Domination
Symmetry
graph
non-zero vertex signed domination
non-zero vertex signed domination number
title On Non-Zero Vertex Signed Domination
title_full On Non-Zero Vertex Signed Domination
title_fullStr On Non-Zero Vertex Signed Domination
title_full_unstemmed On Non-Zero Vertex Signed Domination
title_short On Non-Zero Vertex Signed Domination
title_sort on non zero vertex signed domination
topic graph
non-zero vertex signed domination
non-zero vertex signed domination number
url https://www.mdpi.com/2073-8994/15/3/741
work_keys_str_mv AT baogenxu onnonzerovertexsigneddomination
AT mengmengzheng onnonzerovertexsigneddomination
AT tinglan onnonzerovertexsigneddomination