Impact behavior of spark plasma sintered Ti–Al–Mo/TiN composites: a finite element analysis approach using Abaqus CAE

Abstract Background The utilization of Finite Element Analysis (FEA) has emerged as a crucial methodology in the field of structural and elasticity analysis, facilitating researchers in their understanding of material responses to diverse thermal or structural loads. This study investigates the util...

Full description

Bibliographic Details
Main Authors: Samson Olaitan Jeje, Tawanda Marazani, Mxolisi Brendon Shongwe
Format: Article
Language:English
Published: SpringerOpen 2024-02-01
Series:Beni-Suef University Journal of Basic and Applied Sciences
Subjects:
Online Access:https://doi.org/10.1186/s43088-024-00474-0
_version_ 1797273627605860352
author Samson Olaitan Jeje
Tawanda Marazani
Mxolisi Brendon Shongwe
author_facet Samson Olaitan Jeje
Tawanda Marazani
Mxolisi Brendon Shongwe
author_sort Samson Olaitan Jeje
collection DOAJ
description Abstract Background The utilization of Finite Element Analysis (FEA) has emerged as a crucial methodology in the field of structural and elasticity analysis, facilitating researchers in their understanding of material responses to diverse thermal or structural loads. This study investigates the utilization of FEA to simulate the Impact characteristics of titanium composites, with specific emphasis on the Charpy impact test. The research utilizes the Abaqus Explicit software, which is widely recognized for its explicit dynamic analysis functionalities, to simulate high-speed and short-duration events such as impacts. The primary objective of this study is to examine the impact behavior of Ti–7Al–1mo/TiN composites fabricated through the spark plasma sintering technique. The impact behavior is simulated using FEA, wherein the shear failure model is utilized to replicate fracture phenomena. This paper examines the methodology employed in the FEA approach, with a particular focus on various factors including boundary conditions, explicit dynamic analysis settings, and material properties. Results The outcomes and analyses involve the examination of the von Mises stress distribution, displacement magnitude, and energy behavior of the models that were tested. Reinforcement of Ti–Al–Mo ternary alloy with TiN led to a progressive increase in maximum von Mises stress, reaching a peak at 3 wt% TiN. Conversely, displacement magnitude decreased with increasing TiN content, with CP-Ti and the unreinforced alloy exhibiting the highest values. Absorbed energy also declined with higher TiN levels. While models containing 5 and 7 wt% TiN displayed limited plastic deformation before fracture, composites with ≤ 3 wt% TiN maintained acceptable ductility despite enhanced strength and stiffness. Conclusion The FEA methodology effectively simulates the Charpy impact characteristics of Ti–7Al–1Mo/TiN composites, thereby offering significant contributions to understanding their mechanical behaviors. These findings suggest that TiN reinforcement up to 3 wt% presents a promising strategy for improving the mechanical performance of Ti–Al–Mo alloys while minimizing the trade-off in toughness. This research emphasizes the inherent trade-off between toughness and strength/stiffness, suggesting the possibility of optimizing the composition of materials to suit particular applications. This study makes a valuable contribution to the expanding field of impact behavior research, demonstrating the potential of FEA, specifically utilizing Abaqus Explicit software, for enhancing material design and evaluation.
first_indexed 2024-03-07T14:47:07Z
format Article
id doaj.art-de9af8e41a5c4cb39f3e1787f6a241ed
institution Directory Open Access Journal
issn 2314-8543
language English
last_indexed 2024-03-07T14:47:07Z
publishDate 2024-02-01
publisher SpringerOpen
record_format Article
series Beni-Suef University Journal of Basic and Applied Sciences
spelling doaj.art-de9af8e41a5c4cb39f3e1787f6a241ed2024-03-05T19:57:53ZengSpringerOpenBeni-Suef University Journal of Basic and Applied Sciences2314-85432024-02-0113111110.1186/s43088-024-00474-0Impact behavior of spark plasma sintered Ti–Al–Mo/TiN composites: a finite element analysis approach using Abaqus CAESamson Olaitan Jeje0Tawanda Marazani1Mxolisi Brendon Shongwe2Department of Chemical, Metallurgical and Materials Engineering, Faculty of Engineering and Built Environment, Tshwane University of TechnologyDepartment of Chemical, Metallurgical and Materials Engineering, Faculty of Engineering and Built Environment, Tshwane University of TechnologyDepartment of Chemical, Metallurgical and Materials Engineering, Faculty of Engineering and Built Environment, Tshwane University of TechnologyAbstract Background The utilization of Finite Element Analysis (FEA) has emerged as a crucial methodology in the field of structural and elasticity analysis, facilitating researchers in their understanding of material responses to diverse thermal or structural loads. This study investigates the utilization of FEA to simulate the Impact characteristics of titanium composites, with specific emphasis on the Charpy impact test. The research utilizes the Abaqus Explicit software, which is widely recognized for its explicit dynamic analysis functionalities, to simulate high-speed and short-duration events such as impacts. The primary objective of this study is to examine the impact behavior of Ti–7Al–1mo/TiN composites fabricated through the spark plasma sintering technique. The impact behavior is simulated using FEA, wherein the shear failure model is utilized to replicate fracture phenomena. This paper examines the methodology employed in the FEA approach, with a particular focus on various factors including boundary conditions, explicit dynamic analysis settings, and material properties. Results The outcomes and analyses involve the examination of the von Mises stress distribution, displacement magnitude, and energy behavior of the models that were tested. Reinforcement of Ti–Al–Mo ternary alloy with TiN led to a progressive increase in maximum von Mises stress, reaching a peak at 3 wt% TiN. Conversely, displacement magnitude decreased with increasing TiN content, with CP-Ti and the unreinforced alloy exhibiting the highest values. Absorbed energy also declined with higher TiN levels. While models containing 5 and 7 wt% TiN displayed limited plastic deformation before fracture, composites with ≤ 3 wt% TiN maintained acceptable ductility despite enhanced strength and stiffness. Conclusion The FEA methodology effectively simulates the Charpy impact characteristics of Ti–7Al–1Mo/TiN composites, thereby offering significant contributions to understanding their mechanical behaviors. These findings suggest that TiN reinforcement up to 3 wt% presents a promising strategy for improving the mechanical performance of Ti–Al–Mo alloys while minimizing the trade-off in toughness. This research emphasizes the inherent trade-off between toughness and strength/stiffness, suggesting the possibility of optimizing the composition of materials to suit particular applications. This study makes a valuable contribution to the expanding field of impact behavior research, demonstrating the potential of FEA, specifically utilizing Abaqus Explicit software, for enhancing material design and evaluation.https://doi.org/10.1186/s43088-024-00474-0Titanium matrix compositeFinite element analysisAbaqus Explicit softwareCharpy impact
spellingShingle Samson Olaitan Jeje
Tawanda Marazani
Mxolisi Brendon Shongwe
Impact behavior of spark plasma sintered Ti–Al–Mo/TiN composites: a finite element analysis approach using Abaqus CAE
Beni-Suef University Journal of Basic and Applied Sciences
Titanium matrix composite
Finite element analysis
Abaqus Explicit software
Charpy impact
title Impact behavior of spark plasma sintered Ti–Al–Mo/TiN composites: a finite element analysis approach using Abaqus CAE
title_full Impact behavior of spark plasma sintered Ti–Al–Mo/TiN composites: a finite element analysis approach using Abaqus CAE
title_fullStr Impact behavior of spark plasma sintered Ti–Al–Mo/TiN composites: a finite element analysis approach using Abaqus CAE
title_full_unstemmed Impact behavior of spark plasma sintered Ti–Al–Mo/TiN composites: a finite element analysis approach using Abaqus CAE
title_short Impact behavior of spark plasma sintered Ti–Al–Mo/TiN composites: a finite element analysis approach using Abaqus CAE
title_sort impact behavior of spark plasma sintered ti al mo tin composites a finite element analysis approach using abaqus cae
topic Titanium matrix composite
Finite element analysis
Abaqus Explicit software
Charpy impact
url https://doi.org/10.1186/s43088-024-00474-0
work_keys_str_mv AT samsonolaitanjeje impactbehaviorofsparkplasmasinteredtialmotincompositesafiniteelementanalysisapproachusingabaquscae
AT tawandamarazani impactbehaviorofsparkplasmasinteredtialmotincompositesafiniteelementanalysisapproachusingabaquscae
AT mxolisibrendonshongwe impactbehaviorofsparkplasmasinteredtialmotincompositesafiniteelementanalysisapproachusingabaquscae