Proactive and Nondisruptive Channel Probing for Wavelength Switching in Optical Transmission
Proactive and nondisruptive channel probing is investigated for the measurement of channel power, amplifier channel gain, and optical signal-to-noise ratio (OSNR) without disrupting established wavelength-division multiplexed channels. Using a nondisruptive probe signal over a three-span link, wavel...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2017-01-01
|
Series: | IEEE Photonics Journal |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8107683/ |
Summary: | Proactive and nondisruptive channel probing is investigated for the measurement of channel power, amplifier channel gain, and optical signal-to-noise ratio (OSNR) without disrupting established wavelength-division multiplexed channels. Using a nondisruptive probe signal over a three-span link, wavelength switching-induced power excursions are predicted to be within ±0.2 dB, and OSNR as high as 20 dB is accurately measured with a maximum of 0.5 dB error. |
---|---|
ISSN: | 1943-0655 |