Nearly $k-th$ Partial Ternary Cubic $*$-Derivations On Non-Archimedean $\ell$-Fuzzy $C^{*}$-Ternary Algebras
In this paper, we investigate approximations of the $k-th$ partial ternary cubic derivations on non-Archimedean $\ell$-fuzzy Banach ternary algebras and non-Archimedean $\ell$-fuzzy $C^{*}$-ternary algebras. First, we study non-Archimedean and $\ell$-fuzzy spaces, and then prove the stability of pa...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Maragheh
2022-09-01
|
Series: | Sahand Communications in Mathematical Analysis |
Subjects: | |
Online Access: | https://scma.maragheh.ac.ir/article_251968_1124b5bfb4a5fd95ef9179be88a44ba4.pdf |
Summary: | In this paper, we investigate approximations of the $k-th$ partial ternary cubic derivations on non-Archimedean $\ell$-fuzzy Banach ternary algebras and non-Archimedean $\ell$-fuzzy $C^{*}$-ternary algebras. First, we study non-Archimedean and $\ell$-fuzzy spaces, and then prove the stability of partial ternary cubic $*$-derivations on non-Archimedean $\ell$-fuzzy $C^{*}$-ternary algebras. We therefore provide a link among different disciplines: fuzzy set theory, lattice theory, non-Archimedean spaces, and mathematical analysis. |
---|---|
ISSN: | 2322-5807 2423-3900 |