Summary: | High penetrations of inverter-based renewable resources (IBRs) diminish the resilience that traditional power systems had due to constant research and developments for many years. In particular, dynamic voltage stability becomes one of the major concerns for transmission system operators due to the limited capabilities of IBRs (i.e., voltage and frequency regulation). A heavily loaded renewable-rich network is susceptible to fault-induced delayed voltage recovery (FIDVR) due to insufficient effective reactive power (E-VAr) in power grids. Hence, it is crucial to thoroughly scrutinize each VAr resources’ participation in E-VAr under various operating conditions. Moreover, it is essential to investigate the influence of E-VAr on system post-fault performance. The E-VAr investigation would help in determining the optimal location and sizing of grid-connected IBRs and allow more renewable energy integration. Furthermore, it would enrich decision-making about adopting additional grid support devices. In this paper, a comprehensive assessment framework is utilized to assess the E-VAr of a power system with a large-scale photovoltaic power. Plant under different realistic operating conditions. Several indices quantifying the contribution of VAr resources and load bus voltage recovery assists to explore the transient response and voltage trajectories. The recovery indices help have a better understanding of the factors affecting E-VAr. The proposed framework has been tested in the New England (IEEE 39 bus system) through simulation by DIgSILENT Power Factory.
|