An efficient numerical approach to solve the space fractional FitzHugh–Nagumo model
Abstract In this work, we study the numerical approximation for the space fractional FitzHugh–Nagumo model. The numerical scheme is based on the Crank–Nicolson (C–N) method in time and Legendre-spectral method in space. In addition, we prove that the numerical scheme is unconditionally stable. Numer...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-08-01
|
Series: | Advances in Difference Equations |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13662-019-2270-6 |
_version_ | 1818435745910620160 |
---|---|
author | Jun Zhang Shimin Lin Zixin Liu Fubiao Lin |
author_facet | Jun Zhang Shimin Lin Zixin Liu Fubiao Lin |
author_sort | Jun Zhang |
collection | DOAJ |
description | Abstract In this work, we study the numerical approximation for the space fractional FitzHugh–Nagumo model. The numerical scheme is based on the Crank–Nicolson (C–N) method in time and Legendre-spectral method in space. In addition, we prove that the numerical scheme is unconditionally stable. Numerical examples are presented to verify validity of the proposed scheme. |
first_indexed | 2024-12-14T16:57:46Z |
format | Article |
id | doaj.art-debbc4094f064f0596dc9d79eefb0f56 |
institution | Directory Open Access Journal |
issn | 1687-1847 |
language | English |
last_indexed | 2024-12-14T16:57:46Z |
publishDate | 2019-08-01 |
publisher | SpringerOpen |
record_format | Article |
series | Advances in Difference Equations |
spelling | doaj.art-debbc4094f064f0596dc9d79eefb0f562022-12-21T22:53:56ZengSpringerOpenAdvances in Difference Equations1687-18472019-08-01201911710.1186/s13662-019-2270-6An efficient numerical approach to solve the space fractional FitzHugh–Nagumo modelJun Zhang0Shimin Lin1Zixin Liu2Fubiao Lin3Computational Mathematics Research Center, Guizhou University of Finance and EconomicsDepartment of Science, Jimei UniversitySchool of Mathematics and Statistical, Guizhou University of Finance and EconmicsSchool of Mathematics and Statistical, Guizhou University of Finance and EconmicsAbstract In this work, we study the numerical approximation for the space fractional FitzHugh–Nagumo model. The numerical scheme is based on the Crank–Nicolson (C–N) method in time and Legendre-spectral method in space. In addition, we prove that the numerical scheme is unconditionally stable. Numerical examples are presented to verify validity of the proposed scheme.http://link.springer.com/article/10.1186/s13662-019-2270-6FitzHugh–Nagumo modelSpace fractionalUnconditionally stableLegendre-spectral method |
spellingShingle | Jun Zhang Shimin Lin Zixin Liu Fubiao Lin An efficient numerical approach to solve the space fractional FitzHugh–Nagumo model Advances in Difference Equations FitzHugh–Nagumo model Space fractional Unconditionally stable Legendre-spectral method |
title | An efficient numerical approach to solve the space fractional FitzHugh–Nagumo model |
title_full | An efficient numerical approach to solve the space fractional FitzHugh–Nagumo model |
title_fullStr | An efficient numerical approach to solve the space fractional FitzHugh–Nagumo model |
title_full_unstemmed | An efficient numerical approach to solve the space fractional FitzHugh–Nagumo model |
title_short | An efficient numerical approach to solve the space fractional FitzHugh–Nagumo model |
title_sort | efficient numerical approach to solve the space fractional fitzhugh nagumo model |
topic | FitzHugh–Nagumo model Space fractional Unconditionally stable Legendre-spectral method |
url | http://link.springer.com/article/10.1186/s13662-019-2270-6 |
work_keys_str_mv | AT junzhang anefficientnumericalapproachtosolvethespacefractionalfitzhughnagumomodel AT shiminlin anefficientnumericalapproachtosolvethespacefractionalfitzhughnagumomodel AT zixinliu anefficientnumericalapproachtosolvethespacefractionalfitzhughnagumomodel AT fubiaolin anefficientnumericalapproachtosolvethespacefractionalfitzhughnagumomodel AT junzhang efficientnumericalapproachtosolvethespacefractionalfitzhughnagumomodel AT shiminlin efficientnumericalapproachtosolvethespacefractionalfitzhughnagumomodel AT zixinliu efficientnumericalapproachtosolvethespacefractionalfitzhughnagumomodel AT fubiaolin efficientnumericalapproachtosolvethespacefractionalfitzhughnagumomodel |