An efficient numerical approach to solve the space fractional FitzHugh–Nagumo model

Abstract In this work, we study the numerical approximation for the space fractional FitzHugh–Nagumo model. The numerical scheme is based on the Crank–Nicolson (C–N) method in time and Legendre-spectral method in space. In addition, we prove that the numerical scheme is unconditionally stable. Numer...

Full description

Bibliographic Details
Main Authors: Jun Zhang, Shimin Lin, Zixin Liu, Fubiao Lin
Format: Article
Language:English
Published: SpringerOpen 2019-08-01
Series:Advances in Difference Equations
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13662-019-2270-6
_version_ 1818435745910620160
author Jun Zhang
Shimin Lin
Zixin Liu
Fubiao Lin
author_facet Jun Zhang
Shimin Lin
Zixin Liu
Fubiao Lin
author_sort Jun Zhang
collection DOAJ
description Abstract In this work, we study the numerical approximation for the space fractional FitzHugh–Nagumo model. The numerical scheme is based on the Crank–Nicolson (C–N) method in time and Legendre-spectral method in space. In addition, we prove that the numerical scheme is unconditionally stable. Numerical examples are presented to verify validity of the proposed scheme.
first_indexed 2024-12-14T16:57:46Z
format Article
id doaj.art-debbc4094f064f0596dc9d79eefb0f56
institution Directory Open Access Journal
issn 1687-1847
language English
last_indexed 2024-12-14T16:57:46Z
publishDate 2019-08-01
publisher SpringerOpen
record_format Article
series Advances in Difference Equations
spelling doaj.art-debbc4094f064f0596dc9d79eefb0f562022-12-21T22:53:56ZengSpringerOpenAdvances in Difference Equations1687-18472019-08-01201911710.1186/s13662-019-2270-6An efficient numerical approach to solve the space fractional FitzHugh–Nagumo modelJun Zhang0Shimin Lin1Zixin Liu2Fubiao Lin3Computational Mathematics Research Center, Guizhou University of Finance and EconomicsDepartment of Science, Jimei UniversitySchool of Mathematics and Statistical, Guizhou University of Finance and EconmicsSchool of Mathematics and Statistical, Guizhou University of Finance and EconmicsAbstract In this work, we study the numerical approximation for the space fractional FitzHugh–Nagumo model. The numerical scheme is based on the Crank–Nicolson (C–N) method in time and Legendre-spectral method in space. In addition, we prove that the numerical scheme is unconditionally stable. Numerical examples are presented to verify validity of the proposed scheme.http://link.springer.com/article/10.1186/s13662-019-2270-6FitzHugh–Nagumo modelSpace fractionalUnconditionally stableLegendre-spectral method
spellingShingle Jun Zhang
Shimin Lin
Zixin Liu
Fubiao Lin
An efficient numerical approach to solve the space fractional FitzHugh–Nagumo model
Advances in Difference Equations
FitzHugh–Nagumo model
Space fractional
Unconditionally stable
Legendre-spectral method
title An efficient numerical approach to solve the space fractional FitzHugh–Nagumo model
title_full An efficient numerical approach to solve the space fractional FitzHugh–Nagumo model
title_fullStr An efficient numerical approach to solve the space fractional FitzHugh–Nagumo model
title_full_unstemmed An efficient numerical approach to solve the space fractional FitzHugh–Nagumo model
title_short An efficient numerical approach to solve the space fractional FitzHugh–Nagumo model
title_sort efficient numerical approach to solve the space fractional fitzhugh nagumo model
topic FitzHugh–Nagumo model
Space fractional
Unconditionally stable
Legendre-spectral method
url http://link.springer.com/article/10.1186/s13662-019-2270-6
work_keys_str_mv AT junzhang anefficientnumericalapproachtosolvethespacefractionalfitzhughnagumomodel
AT shiminlin anefficientnumericalapproachtosolvethespacefractionalfitzhughnagumomodel
AT zixinliu anefficientnumericalapproachtosolvethespacefractionalfitzhughnagumomodel
AT fubiaolin anefficientnumericalapproachtosolvethespacefractionalfitzhughnagumomodel
AT junzhang efficientnumericalapproachtosolvethespacefractionalfitzhughnagumomodel
AT shiminlin efficientnumericalapproachtosolvethespacefractionalfitzhughnagumomodel
AT zixinliu efficientnumericalapproachtosolvethespacefractionalfitzhughnagumomodel
AT fubiaolin efficientnumericalapproachtosolvethespacefractionalfitzhughnagumomodel