Two-channel sampling in wavelet subspaces
We develop two-channel sampling theory in the wavelet subspace V1 from the multi resolution analysis {Vj}j∈𝕫. Extending earlier results by G. G. Walter [11], W. Chen and S. Itoh [2] and Y. M. Hong et al [5] on the sampling theory in the wavelet or shift invariant spaces, we find a necessary and suff...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sciendo
2015-01-01
|
Series: | Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica |
Subjects: | |
Online Access: | https://doi.org/10.1515/auom-2015-0009 |
_version_ | 1818307252312866816 |
---|---|
author | Kim J.M. Kwon K.H. |
author_facet | Kim J.M. Kwon K.H. |
author_sort | Kim J.M. |
collection | DOAJ |
description | We develop two-channel sampling theory in the wavelet subspace V1 from the multi resolution analysis {Vj}j∈𝕫. Extending earlier results by G. G. Walter [11], W. Chen and S. Itoh [2] and Y. M. Hong et al [5] on the sampling theory in the wavelet or shift invariant spaces, we find a necessary and sufficient condition for two-channel sampling expansion formula to hold in V1. |
first_indexed | 2024-12-13T06:55:25Z |
format | Article |
id | doaj.art-dece5a21155a4d30865710e10b1d2f9a |
institution | Directory Open Access Journal |
issn | 1844-0835 |
language | English |
last_indexed | 2024-12-13T06:55:25Z |
publishDate | 2015-01-01 |
publisher | Sciendo |
record_format | Article |
series | Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica |
spelling | doaj.art-dece5a21155a4d30865710e10b1d2f9a2022-12-21T23:56:02ZengSciendoAnalele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica1844-08352015-01-0123111512610.1515/auom-2015-0009Two-channel sampling in wavelet subspacesKim J.M.0Kwon K.H.1 Faculty of Mathematics and Computer Sciences, Korea Science Academy of KAIST, Korea (Republic of) Faculty of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Korea (Republic of)We develop two-channel sampling theory in the wavelet subspace V1 from the multi resolution analysis {Vj}j∈𝕫. Extending earlier results by G. G. Walter [11], W. Chen and S. Itoh [2] and Y. M. Hong et al [5] on the sampling theory in the wavelet or shift invariant spaces, we find a necessary and sufficient condition for two-channel sampling expansion formula to hold in V1.https://doi.org/10.1515/auom-2015-0009two-channel samplingwavelet subspacesriesz basisprimary 42c15 |
spellingShingle | Kim J.M. Kwon K.H. Two-channel sampling in wavelet subspaces Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica two-channel sampling wavelet subspaces riesz basis primary 42c15 |
title | Two-channel sampling in wavelet subspaces |
title_full | Two-channel sampling in wavelet subspaces |
title_fullStr | Two-channel sampling in wavelet subspaces |
title_full_unstemmed | Two-channel sampling in wavelet subspaces |
title_short | Two-channel sampling in wavelet subspaces |
title_sort | two channel sampling in wavelet subspaces |
topic | two-channel sampling wavelet subspaces riesz basis primary 42c15 |
url | https://doi.org/10.1515/auom-2015-0009 |
work_keys_str_mv | AT kimjm twochannelsamplinginwaveletsubspaces AT kwonkh twochannelsamplinginwaveletsubspaces |