Two-channel sampling in wavelet subspaces

We develop two-channel sampling theory in the wavelet subspace V1 from the multi resolution analysis {Vj}j∈𝕫. Extending earlier results by G. G. Walter [11], W. Chen and S. Itoh [2] and Y. M. Hong et al [5] on the sampling theory in the wavelet or shift invariant spaces, we find a necessary and suff...

Full description

Bibliographic Details
Main Authors: Kim J.M., Kwon K.H.
Format: Article
Language:English
Published: Sciendo 2015-01-01
Series:Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
Subjects:
Online Access:https://doi.org/10.1515/auom-2015-0009
_version_ 1818307252312866816
author Kim J.M.
Kwon K.H.
author_facet Kim J.M.
Kwon K.H.
author_sort Kim J.M.
collection DOAJ
description We develop two-channel sampling theory in the wavelet subspace V1 from the multi resolution analysis {Vj}j∈𝕫. Extending earlier results by G. G. Walter [11], W. Chen and S. Itoh [2] and Y. M. Hong et al [5] on the sampling theory in the wavelet or shift invariant spaces, we find a necessary and sufficient condition for two-channel sampling expansion formula to hold in V1.
first_indexed 2024-12-13T06:55:25Z
format Article
id doaj.art-dece5a21155a4d30865710e10b1d2f9a
institution Directory Open Access Journal
issn 1844-0835
language English
last_indexed 2024-12-13T06:55:25Z
publishDate 2015-01-01
publisher Sciendo
record_format Article
series Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
spelling doaj.art-dece5a21155a4d30865710e10b1d2f9a2022-12-21T23:56:02ZengSciendoAnalele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica1844-08352015-01-0123111512610.1515/auom-2015-0009Two-channel sampling in wavelet subspacesKim J.M.0Kwon K.H.1 Faculty of Mathematics and Computer Sciences, Korea Science Academy of KAIST, Korea (Republic of) Faculty of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Korea (Republic of)We develop two-channel sampling theory in the wavelet subspace V1 from the multi resolution analysis {Vj}j∈𝕫. Extending earlier results by G. G. Walter [11], W. Chen and S. Itoh [2] and Y. M. Hong et al [5] on the sampling theory in the wavelet or shift invariant spaces, we find a necessary and sufficient condition for two-channel sampling expansion formula to hold in V1.https://doi.org/10.1515/auom-2015-0009two-channel samplingwavelet subspacesriesz basisprimary 42c15
spellingShingle Kim J.M.
Kwon K.H.
Two-channel sampling in wavelet subspaces
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
two-channel sampling
wavelet subspaces
riesz basis
primary 42c15
title Two-channel sampling in wavelet subspaces
title_full Two-channel sampling in wavelet subspaces
title_fullStr Two-channel sampling in wavelet subspaces
title_full_unstemmed Two-channel sampling in wavelet subspaces
title_short Two-channel sampling in wavelet subspaces
title_sort two channel sampling in wavelet subspaces
topic two-channel sampling
wavelet subspaces
riesz basis
primary 42c15
url https://doi.org/10.1515/auom-2015-0009
work_keys_str_mv AT kimjm twochannelsamplinginwaveletsubspaces
AT kwonkh twochannelsamplinginwaveletsubspaces