Quantum Tomography of Two-Qutrit Werner States

In this article, we introduce a framework for two-qutrit Werner states tomography with Gaussian noise. The measurement scheme is based on the symmetric, informationally complete positive operator-valued measure. To make the framework realistic, we impose the Gaussian noise on the measured states num...

Full description

Bibliographic Details
Main Authors: Haigang Wang, Kan He
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/9/10/741
Description
Summary:In this article, we introduce a framework for two-qutrit Werner states tomography with Gaussian noise. The measurement scheme is based on the symmetric, informationally complete positive operator-valued measure. To make the framework realistic, we impose the Gaussian noise on the measured states numbers. Through numerical simulation, we successfully reconstructed the two-qutrit Werner states in various experimental scenarios and analyzed the optimal scenario from four aspects: fidelity, purity, entanglement, and coherence.
ISSN:2304-6732