On the Recursive Sequence <inline-formula><graphic file="1687-1847-2009-327649-i1.gif"/></inline-formula>

<p/> <p>In this paper we study the boundedness, the persistence, the attractivity and the stability of the positive solutions of the nonlinear difference equation <inline-formula><graphic file="1687-1847-2009-327649-i2.gif"/></inline-formula>, <inline-formu...

Full description

Bibliographic Details
Main Authors: Schinas CJ, Papaschinopoulos G, Stefanidou G
Format: Article
Language:English
Published: SpringerOpen 2009-01-01
Series:Advances in Difference Equations
Online Access:http://www.advancesindifferenceequations.com/content/2009/327649
_version_ 1818370403356114944
author Schinas CJ
Papaschinopoulos G
Stefanidou G
author_facet Schinas CJ
Papaschinopoulos G
Stefanidou G
author_sort Schinas CJ
collection DOAJ
description <p/> <p>In this paper we study the boundedness, the persistence, the attractivity and the stability of the positive solutions of the nonlinear difference equation <inline-formula><graphic file="1687-1847-2009-327649-i2.gif"/></inline-formula>, <inline-formula><graphic file="1687-1847-2009-327649-i3.gif"/></inline-formula> where <inline-formula><graphic file="1687-1847-2009-327649-i4.gif"/></inline-formula> and <inline-formula><graphic file="1687-1847-2009-327649-i5.gif"/></inline-formula>. Moreover we investigate the existence of a prime two periodic solution of the above equation and we find solutions which converge to this periodic solution.</p>
first_indexed 2024-12-13T23:39:11Z
format Article
id doaj.art-deff075f1e1147e18938c80eed14a1e6
institution Directory Open Access Journal
issn 1687-1839
1687-1847
language English
last_indexed 2024-12-13T23:39:11Z
publishDate 2009-01-01
publisher SpringerOpen
record_format Article
series Advances in Difference Equations
spelling doaj.art-deff075f1e1147e18938c80eed14a1e62022-12-21T23:27:12ZengSpringerOpenAdvances in Difference Equations1687-18391687-18472009-01-0120091327649On the Recursive Sequence <inline-formula><graphic file="1687-1847-2009-327649-i1.gif"/></inline-formula>Schinas CJPapaschinopoulos GStefanidou G<p/> <p>In this paper we study the boundedness, the persistence, the attractivity and the stability of the positive solutions of the nonlinear difference equation <inline-formula><graphic file="1687-1847-2009-327649-i2.gif"/></inline-formula>, <inline-formula><graphic file="1687-1847-2009-327649-i3.gif"/></inline-formula> where <inline-formula><graphic file="1687-1847-2009-327649-i4.gif"/></inline-formula> and <inline-formula><graphic file="1687-1847-2009-327649-i5.gif"/></inline-formula>. Moreover we investigate the existence of a prime two periodic solution of the above equation and we find solutions which converge to this periodic solution.</p>http://www.advancesindifferenceequations.com/content/2009/327649
spellingShingle Schinas CJ
Papaschinopoulos G
Stefanidou G
On the Recursive Sequence <inline-formula><graphic file="1687-1847-2009-327649-i1.gif"/></inline-formula>
Advances in Difference Equations
title On the Recursive Sequence <inline-formula><graphic file="1687-1847-2009-327649-i1.gif"/></inline-formula>
title_full On the Recursive Sequence <inline-formula><graphic file="1687-1847-2009-327649-i1.gif"/></inline-formula>
title_fullStr On the Recursive Sequence <inline-formula><graphic file="1687-1847-2009-327649-i1.gif"/></inline-formula>
title_full_unstemmed On the Recursive Sequence <inline-formula><graphic file="1687-1847-2009-327649-i1.gif"/></inline-formula>
title_short On the Recursive Sequence <inline-formula><graphic file="1687-1847-2009-327649-i1.gif"/></inline-formula>
title_sort on the recursive sequence inline formula graphic file 1687 1847 2009 327649 i1 gif inline formula
url http://www.advancesindifferenceequations.com/content/2009/327649
work_keys_str_mv AT schinascj ontherecursivesequenceinlineformulagraphicfile168718472009327649i1gifinlineformula
AT papaschinopoulosg ontherecursivesequenceinlineformulagraphicfile168718472009327649i1gifinlineformula
AT stefanidoug ontherecursivesequenceinlineformulagraphicfile168718472009327649i1gifinlineformula