Prediction of Small Bubble Holdups in Bubble Columns Operated with Various Organic Liquids at Both Ambient and Elevated Pressures and Temperatures

This article focuses on the prediction of the small bubble holdups (assuming the existence of two major bubble classes) in two bubble columns (0.289 m in ID and 0.102 m in ID), operated with organic liquids under various conditions (including high temperature and pressure). A new correction factor h...

Full description

Bibliographic Details
Main Author: Stoyan Nedeltchev
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Fluids
Subjects:
Online Access:https://www.mdpi.com/2311-5521/8/6/163
Description
Summary:This article focuses on the prediction of the small bubble holdups (assuming the existence of two major bubble classes) in two bubble columns (0.289 m in ID and 0.102 m in ID), operated with organic liquids under various conditions (including high temperature and pressure). A new correction factor has been established in the existing model for the prediction of the gas holdups in the homogeneous regime. The correction parameter is a single function of the Eötvös number (gravitational forces to surface tension forces), which characterizes the bubble shape. In addition, the behavior of small bubble holdups in 1-butanol (selected as a frequently researched alcohol) aerated with nitrogen, in a smaller BC (0.102 m in ID), at various operating pressures, is presented and discussed. The ratio of small bubble holdup to overall gas holdup, as a function of superficial gas velocity and operating pressure, has been investigated. All small bubble holdups in this work have been measured by means of the dynamic gas disengagement technique.
ISSN:2311-5521