Characterization of type III kerogen from Tyrolean shale (Hahntennjoch, Austria) based on its oxidation products

A 29-step alkaline permanganate degradation of type III kerogen from Tyrolean (Hahntennjoch, Austria) oil shale was performed. A high yield of oxidation products was obtained (93.7 % relative to the original kerogen): 0.5 % neutrals and bases, 19.5 % ether-soluble acids and 58.9 % of precipitated (P...

Full description

Bibliographic Details
Main Authors: D. VITOROVIC, A. AMBLÈS, O. CVETKOVIC, S. BAJC
Format: Article
Language:English
Published: Serbian Chemical Society 2008-04-01
Series:Journal of the Serbian Chemical Society
Subjects:
Online Access:http://www.shd.org.yu/JSCS/Vol73/No4/JSCS-3728.pdf
Description
Summary:A 29-step alkaline permanganate degradation of type III kerogen from Tyrolean (Hahntennjoch, Austria) oil shale was performed. A high yield of oxidation products was obtained (93.7 % relative to the original kerogen): 0.5 % neutrals and bases, 19.5 % ether-soluble acids and 58.9 % of precipitated (PA). A substantial amount of kerogen carbon (14.8 %) was oxidized into carbon dioxide. The organic residue remaining after the final oxidation step was 6.9 %. The PA components were further oxidized and the total yields relative to original PA were 1.0 % neutrals and bases and 59.0 % ether-soluble acids, the non-degraded residue being 29.3 %. Detailed quantitative and qualitative analysis of all oxidation products suggested the Tyrolean shale kerogen to be a heterogeneous macromolecular substance consisting of three types of structures differing in composition and susceptibility towards alkaline permanganate: the first, resistant, presumably composed of aromatic structures linked by resorcinol ethereal bonds; the second, combined in nature, the aliphatic part comprising methyl-substituents and short cross-links, both easily oxidized into CO2, water and low molecular weight acids and aromatic structures yielding aromatic di- and tri-carboxylic acids as oxidation products; finally the third, composed of aliphatic cross-links and substituents, alicyclic (and/or heterocyclic) and some aromatic structures, bound into units moderately resistant towards oxidation. The overall yields of kerogen and PA oxidation products lead towards a balance between aromatic, alkane mono- and dicarboxylic and alkanepolycarboxylic acids, suggesting a shift of the structure of Tyrolean shale kerogen from typical aromatic reference type III towards a heterogeneous aromatic-aliphatic-alicyclic type structure.
ISSN:0352-5139