Modeling hydraulic cracks and inclusion interaction using XFEM

In this study, we employ a coupled hydromechanical model to study the hydraulic fracture propagation path in porous media under the influence of existing pressurized voids. The hydraulic fracturing field study reveals that the existing natural voids and cracks alter the local properties of the porou...

Full description

Bibliographic Details
Main Authors: Bo He, Xiaoying Zhuang
Format: Article
Language:English
Published: KeAi Communications Co., Ltd. 2018-09-01
Series:Underground Space
Online Access:http://www.sciencedirect.com/science/article/pii/S2467967418300357
Description
Summary:In this study, we employ a coupled hydromechanical model to study the hydraulic fracture propagation path in porous media under the influence of existing pressurized voids. The hydraulic fracturing field study reveals that the existing natural voids and cracks alter the local properties of the porous media and influence the fracture propagation pattern. We incorporate these phenomena into the presented hydromechanical model, which is constructed from the mass and momentum balance equations for saturated porous media. The extended finite element method (XFEM) is applied for modeling the fluid flow through discrete cracks. The nonlinear hydromechanical equations are solved by the Newton–Raphson scheme with an implicit time integration procedure. Finally, numerical examples are presented and compared with experimental results. It is found that the fracture propagation path is significantly influenced by the existing pressurized voids and essential properties of the porous media; that is, the crack trends to propagate towards the pressurized voids. Keywords: Porous media, XFEM, Hydraulic fractures, Crack propagation
ISSN:2467-9674