Contour Propagation for Radiotherapy Treatment Planning Using Nonrigid Registration and Parameter Optimization: Case Studies in Liver and Breast Cancer

Radiotherapy treatments are carried out using computerized axial tomography. In radiation therapy planning, the radiation oncologist must do a manual segmentation of volumes of interest to delineate the organs that should be irradiated. This way of carrying out the process generates long execution t...

Full description

Bibliographic Details
Main Authors: Eliseo Vargas-Bedoya, Juan Carlos Rivera, Maria Eugenia Puerta, Aurelio Angulo, Niklas Wahl, Gonzalo Cabal
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/17/8523
_version_ 1797496472055316480
author Eliseo Vargas-Bedoya
Juan Carlos Rivera
Maria Eugenia Puerta
Aurelio Angulo
Niklas Wahl
Gonzalo Cabal
author_facet Eliseo Vargas-Bedoya
Juan Carlos Rivera
Maria Eugenia Puerta
Aurelio Angulo
Niklas Wahl
Gonzalo Cabal
author_sort Eliseo Vargas-Bedoya
collection DOAJ
description Radiotherapy treatments are carried out using computerized axial tomography. In radiation therapy planning, the radiation oncologist must do a manual segmentation of volumes of interest to delineate the organs that should be irradiated. This way of carrying out the process generates long execution times and introduces a subjective component. In this study, a contour-propagation algorithm is formulated to automate the segmentation, based on elastic registration or nonrigid demon registration. A heuristic algorithm to find the parameters that optimize the registration is also proposed. The parameters found along with the contour-propagation algorithm are able to estimate contours of scans with Dice similarity coefficients (DSC) greater than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.92</mn></mrow></semantics></math></inline-formula> and maintain stability with B-spline registration, which takes in the parameters found as input. The study allows for validating the results using the correlation coefficient (CC) to compare the similarity between the voxels’ gray-scale intensity of the estimated tomography and the original tomography, obtaining values greater than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.96</mn></mrow></semantics></math></inline-formula>. These values were validated under medical criteria and applied to liver and breast CT scans, indicating good performance for radiation therapy planning.
first_indexed 2024-03-10T03:04:07Z
format Article
id doaj.art-df125bfb6a194dd7875577c4a1ef5e8c
institution Directory Open Access Journal
issn 2076-3417
language English
last_indexed 2024-03-10T03:04:07Z
publishDate 2022-08-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj.art-df125bfb6a194dd7875577c4a1ef5e8c2023-11-23T12:41:05ZengMDPI AGApplied Sciences2076-34172022-08-011217852310.3390/app12178523Contour Propagation for Radiotherapy Treatment Planning Using Nonrigid Registration and Parameter Optimization: Case Studies in Liver and Breast CancerEliseo Vargas-Bedoya0Juan Carlos Rivera1Maria Eugenia Puerta2Aurelio Angulo3Niklas Wahl4Gonzalo Cabal5Mathematics and Applications Research Group, Universidad EAFIT, Medellin 050022, ColombiaMathematical Modeling Research Group, Universidad EAFIT, Medellin 050022, ColombiaMathematics and Applications Research Group, Universidad EAFIT, Medellin 050022, ColombiaDepartment of Radiation Therapy, Clínica El Rosario, Medellin 050012, ColombiaResearch Group Radiotherapy Optimization, German Cancer Research Center, 69120 Heidelberg, GermanyDepartment of Radiation Therapy, Clínica El Rosario, Medellin 050012, ColombiaRadiotherapy treatments are carried out using computerized axial tomography. In radiation therapy planning, the radiation oncologist must do a manual segmentation of volumes of interest to delineate the organs that should be irradiated. This way of carrying out the process generates long execution times and introduces a subjective component. In this study, a contour-propagation algorithm is formulated to automate the segmentation, based on elastic registration or nonrigid demon registration. A heuristic algorithm to find the parameters that optimize the registration is also proposed. The parameters found along with the contour-propagation algorithm are able to estimate contours of scans with Dice similarity coefficients (DSC) greater than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.92</mn></mrow></semantics></math></inline-formula> and maintain stability with B-spline registration, which takes in the parameters found as input. The study allows for validating the results using the correlation coefficient (CC) to compare the similarity between the voxels’ gray-scale intensity of the estimated tomography and the original tomography, obtaining values greater than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.96</mn></mrow></semantics></math></inline-formula>. These values were validated under medical criteria and applied to liver and breast CT scans, indicating good performance for radiation therapy planning.https://www.mdpi.com/2076-3417/12/17/8523image registrationnonrigid registrationdemonsheuristic methods
spellingShingle Eliseo Vargas-Bedoya
Juan Carlos Rivera
Maria Eugenia Puerta
Aurelio Angulo
Niklas Wahl
Gonzalo Cabal
Contour Propagation for Radiotherapy Treatment Planning Using Nonrigid Registration and Parameter Optimization: Case Studies in Liver and Breast Cancer
Applied Sciences
image registration
nonrigid registration
demons
heuristic methods
title Contour Propagation for Radiotherapy Treatment Planning Using Nonrigid Registration and Parameter Optimization: Case Studies in Liver and Breast Cancer
title_full Contour Propagation for Radiotherapy Treatment Planning Using Nonrigid Registration and Parameter Optimization: Case Studies in Liver and Breast Cancer
title_fullStr Contour Propagation for Radiotherapy Treatment Planning Using Nonrigid Registration and Parameter Optimization: Case Studies in Liver and Breast Cancer
title_full_unstemmed Contour Propagation for Radiotherapy Treatment Planning Using Nonrigid Registration and Parameter Optimization: Case Studies in Liver and Breast Cancer
title_short Contour Propagation for Radiotherapy Treatment Planning Using Nonrigid Registration and Parameter Optimization: Case Studies in Liver and Breast Cancer
title_sort contour propagation for radiotherapy treatment planning using nonrigid registration and parameter optimization case studies in liver and breast cancer
topic image registration
nonrigid registration
demons
heuristic methods
url https://www.mdpi.com/2076-3417/12/17/8523
work_keys_str_mv AT eliseovargasbedoya contourpropagationforradiotherapytreatmentplanningusingnonrigidregistrationandparameteroptimizationcasestudiesinliverandbreastcancer
AT juancarlosrivera contourpropagationforradiotherapytreatmentplanningusingnonrigidregistrationandparameteroptimizationcasestudiesinliverandbreastcancer
AT mariaeugeniapuerta contourpropagationforradiotherapytreatmentplanningusingnonrigidregistrationandparameteroptimizationcasestudiesinliverandbreastcancer
AT aurelioangulo contourpropagationforradiotherapytreatmentplanningusingnonrigidregistrationandparameteroptimizationcasestudiesinliverandbreastcancer
AT niklaswahl contourpropagationforradiotherapytreatmentplanningusingnonrigidregistrationandparameteroptimizationcasestudiesinliverandbreastcancer
AT gonzalocabal contourpropagationforradiotherapytreatmentplanningusingnonrigidregistrationandparameteroptimizationcasestudiesinliverandbreastcancer