An efficient numerical approach for stochastic evolution PDEs driven by random diffusion coefficients and multiplicative noise

In this paper, we investigate the stochastic evolution equations (SEEs) driven by a bounded log-Whittle-Mate´rn (W-M) random diffusion coefficient field and Q-Wiener multiplicative force noise. First, the well-posedness of the underlying equations is established by proving the existence, uniqueness,...

Full description

Bibliographic Details
Main Authors: Xiao Qi, Mejdi Azaiez, Can Huang, Chuanju Xu
Format: Article
Language:English
Published: AIMS Press 2022-09-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.20221134?viewType=HTML
_version_ 1797996602846085120
author Xiao Qi
Mejdi Azaiez
Can Huang
Chuanju Xu
author_facet Xiao Qi
Mejdi Azaiez
Can Huang
Chuanju Xu
author_sort Xiao Qi
collection DOAJ
description In this paper, we investigate the stochastic evolution equations (SEEs) driven by a bounded log-Whittle-Mate´rn (W-M) random diffusion coefficient field and Q-Wiener multiplicative force noise. First, the well-posedness of the underlying equations is established by proving the existence, uniqueness, and stability of the mild solution. A sampling approach called approximation circulant embedding with padding is proposed to sample the random coefficient field. Then a spatio-temporal discretization method based on semi-implicit Euler-Maruyama scheme and finite element method is constructed and analyzed. An estimate for the strong convergence rate is derived. Numerical experiments are finally reported to confirm the theoretical result.
first_indexed 2024-04-11T10:19:54Z
format Article
id doaj.art-df1583b26ac54175ba06053c3772227c
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-04-11T10:19:54Z
publishDate 2022-09-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-df1583b26ac54175ba06053c3772227c2022-12-22T04:29:48ZengAIMS PressAIMS Mathematics2473-69882022-09-01712206842071010.3934/math.20221134An efficient numerical approach for stochastic evolution PDEs driven by random diffusion coefficients and multiplicative noiseXiao Qi 0Mejdi Azaiez1Can Huang2Chuanju Xu 31. School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High Performance Scientific Computing, Xiamen University, 361005 Xiamen, China1. School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High Performance Scientific Computing, Xiamen University, 361005 Xiamen, China 2. Bordeaux INP, Laboratoire I2M UMR 5295, 33607 Pessac, France1. School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High Performance Scientific Computing, Xiamen University, 361005 Xiamen, China1. School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High Performance Scientific Computing, Xiamen University, 361005 Xiamen, ChinaIn this paper, we investigate the stochastic evolution equations (SEEs) driven by a bounded log-Whittle-Mate´rn (W-M) random diffusion coefficient field and Q-Wiener multiplicative force noise. First, the well-posedness of the underlying equations is established by proving the existence, uniqueness, and stability of the mild solution. A sampling approach called approximation circulant embedding with padding is proposed to sample the random coefficient field. Then a spatio-temporal discretization method based on semi-implicit Euler-Maruyama scheme and finite element method is constructed and analyzed. An estimate for the strong convergence rate is derived. Numerical experiments are finally reported to confirm the theoretical result.https://www.aimspress.com/article/doi/10.3934/math.20221134?viewType=HTMLseesrandom coefficientq-wiener multiplicative noisestrong convergence
spellingShingle Xiao Qi
Mejdi Azaiez
Can Huang
Chuanju Xu
An efficient numerical approach for stochastic evolution PDEs driven by random diffusion coefficients and multiplicative noise
AIMS Mathematics
sees
random coefficient
q-wiener multiplicative noise
strong convergence
title An efficient numerical approach for stochastic evolution PDEs driven by random diffusion coefficients and multiplicative noise
title_full An efficient numerical approach for stochastic evolution PDEs driven by random diffusion coefficients and multiplicative noise
title_fullStr An efficient numerical approach for stochastic evolution PDEs driven by random diffusion coefficients and multiplicative noise
title_full_unstemmed An efficient numerical approach for stochastic evolution PDEs driven by random diffusion coefficients and multiplicative noise
title_short An efficient numerical approach for stochastic evolution PDEs driven by random diffusion coefficients and multiplicative noise
title_sort efficient numerical approach for stochastic evolution pdes driven by random diffusion coefficients and multiplicative noise
topic sees
random coefficient
q-wiener multiplicative noise
strong convergence
url https://www.aimspress.com/article/doi/10.3934/math.20221134?viewType=HTML
work_keys_str_mv AT xiaoqi anefficientnumericalapproachforstochasticevolutionpdesdrivenbyrandomdiffusioncoefficientsandmultiplicativenoise
AT mejdiazaiez anefficientnumericalapproachforstochasticevolutionpdesdrivenbyrandomdiffusioncoefficientsandmultiplicativenoise
AT canhuang anefficientnumericalapproachforstochasticevolutionpdesdrivenbyrandomdiffusioncoefficientsandmultiplicativenoise
AT chuanjuxu anefficientnumericalapproachforstochasticevolutionpdesdrivenbyrandomdiffusioncoefficientsandmultiplicativenoise
AT xiaoqi efficientnumericalapproachforstochasticevolutionpdesdrivenbyrandomdiffusioncoefficientsandmultiplicativenoise
AT mejdiazaiez efficientnumericalapproachforstochasticevolutionpdesdrivenbyrandomdiffusioncoefficientsandmultiplicativenoise
AT canhuang efficientnumericalapproachforstochasticevolutionpdesdrivenbyrandomdiffusioncoefficientsandmultiplicativenoise
AT chuanjuxu efficientnumericalapproachforstochasticevolutionpdesdrivenbyrandomdiffusioncoefficientsandmultiplicativenoise