Testing for the Unconfoundedness Assumption Using an Instrumental Assumption
The identification of average causal effects of a treatment in observational studies is typically based either on the unconfoundedness assumption (exogeneity of the treatment) or on the availability of an instrument. When available, instruments may also be used to test for the unconfoundedness assum...
Hoofdauteurs: | de Luna Xavier, Johansson Per |
---|---|
Formaat: | Artikel |
Taal: | English |
Gepubliceerd in: |
De Gruyter
2014-09-01
|
Reeks: | Journal of Causal Inference |
Onderwerpen: | |
Online toegang: | https://doi.org/10.1515/jci-2013-0011 |
Gelijkaardige items
-
Latent class instrumental variables and the monotonicity assumption
door: Stuart G. Baker
Gepubliceerd in: (2020-03-01) -
Estimating Stochastic Volatility under the Assumption of Stochastic Volatility of Volatility
door: Moawia Alghalith, et al.
Gepubliceerd in: (2020-04-01) -
An Upper Bound of the Bias of Nadaraya-Watson Kernel Regression under Lipschitz Assumptions
door: Samuele Tosatto, et al.
Gepubliceerd in: (2020-12-01) -
Assumption Trade-Offs When Choosing Identification Strategies for Pre-Post Treatment Effect Estimation: An Illustration of a Community-Based Intervention in Madagascar
door: Weber Ann M., et al.
Gepubliceerd in: (2015-03-01) -
An improved multiply robust estimator for the average treatment effect
door: Ce Wang, et al.
Gepubliceerd in: (2023-10-01)