Stereoassembled V2O5@FeOOH Hollow Architectures with Lithiation Volumetric Strain Self-Reconstruction for Lithium-Ion Storage

Vanadium oxides have recently attracted widespread attention due to their unique advantages and have demonstrated promising chemical and physical properties for energy storage. This work develops a mild and efficient method to stereoassemble hollow V2O5@FeOOH heterostructured nanoflowers with thin n...

Full description

Bibliographic Details
Main Authors: Yao Zhang, Kun Rui, Aoming Huang, Ying Ding, Kang Hu, Wenhui Shi, Xiehong Cao, Huijuan Lin, Jixin Zhu, Wei Huang
Format: Article
Language:English
Published: American Association for the Advancement of Science (AAAS) 2020-01-01
Series:Research
Online Access:http://dx.doi.org/10.34133/2020/2360796
Description
Summary:Vanadium oxides have recently attracted widespread attention due to their unique advantages and have demonstrated promising chemical and physical properties for energy storage. This work develops a mild and efficient method to stereoassemble hollow V2O5@FeOOH heterostructured nanoflowers with thin nanosheets. These dual-phased architectures possess multiple lithiation voltage plateau and well-defined heterointerfaces facilitating efficient charge transfer, mass diffusion, and self-reconstruction with volumetric strain. As a proof of concept, the resulting V2O5@FeOOH hollow nanoflowers as an anode material for lithium-ion batteries (LIBs) realize high-specific capacities, long lifespans, and superior rate capabilities, e.g., maintaining a specific capacity as high as 985 mAh g−1 at 200 mA g−1 with good cyclability.
ISSN:2639-5274