The impact and estimation of uncertainty correlation for multi-angle polarimetric remote sensing of aerosols and ocean color

<p>Multi-angle polarimetric (MAP) measurements contain rich information for characterization of aerosol microphysical and optical properties that can be used to improve atmospheric correction in ocean color remote sensing. Advanced retrieval algorithms have been developed to obtain multiple ge...

詳細記述

書誌詳細
主要な著者: M. Gao, K. Knobelspiesse, B. A. Franz, P.-W. Zhai, B. Cairns, X. Xu, J. V. Martins
フォーマット: 論文
言語:English
出版事項: Copernicus Publications 2023-04-01
シリーズ:Atmospheric Measurement Techniques
オンライン・アクセス:https://amt.copernicus.org/articles/16/2067/2023/amt-16-2067-2023.pdf
_version_ 1827964522183262208
author M. Gao
M. Gao
K. Knobelspiesse
B. A. Franz
P.-W. Zhai
B. Cairns
X. Xu
J. V. Martins
author_facet M. Gao
M. Gao
K. Knobelspiesse
B. A. Franz
P.-W. Zhai
B. Cairns
X. Xu
J. V. Martins
author_sort M. Gao
collection DOAJ
description <p>Multi-angle polarimetric (MAP) measurements contain rich information for characterization of aerosol microphysical and optical properties that can be used to improve atmospheric correction in ocean color remote sensing. Advanced retrieval algorithms have been developed to obtain multiple geophysical parameters in the atmosphere–ocean system, although uncertainty correlation among measurements is generally ignored due to lack of knowledge on its strength and characterization. In this work, we provide a practical framework to evaluate the impact of the angular uncertainty correlation from retrieval results and a method to estimate correlation strength from retrieval fitting residuals. The Fast Multi-Angular Polarimetric Ocean coLor (FastMAPOL) retrieval algorithm, based on neural-network forward models, is used to conduct the retrievals and uncertainty quantification. In addition, we also discuss a flexible approach to include a correlated uncertainty model in the retrieval algorithm. The impact of angular correlation on retrieval uncertainties is discussed based on synthetic Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) and Hyper-Angular Rainbow Polarimeter 2 (HARP2) measurements using a Monte Carlo uncertainty estimation method. Correlation properties are estimated using autocorrelation functions based on the fitting residuals from both synthetic AirHARP and HARP2 data and real AirHARP measurement, with the resulting angular correlation parameters found to be larger than 0.9 and 0.8 for reflectance and degree of linear polarization (DoLP), respectively, which correspond to correlation angles of 10 and 5<span class="inline-formula"><sup>∘</sup></span>. Although this study focuses on angular correlation from HARP instruments, the methodology to study and quantify uncertainty correlation is also applicable to other instruments with angular, spectral, or spatial correlations and can help inform laboratory calibration and characterization of the instrument uncertainty structure.</p>
first_indexed 2024-04-09T17:17:47Z
format Article
id doaj.art-df2c4a54194a4ad6a8d49b6aab2b8419
institution Directory Open Access Journal
issn 1867-1381
1867-8548
language English
last_indexed 2024-04-09T17:17:47Z
publishDate 2023-04-01
publisher Copernicus Publications
record_format Article
series Atmospheric Measurement Techniques
spelling doaj.art-df2c4a54194a4ad6a8d49b6aab2b84192023-04-19T12:02:09ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482023-04-01162067208710.5194/amt-16-2067-2023The impact and estimation of uncertainty correlation for multi-angle polarimetric remote sensing of aerosols and ocean colorM. Gao0M. Gao1K. Knobelspiesse2B. A. Franz3P.-W. Zhai4B. Cairns5X. Xu6J. V. Martins7NASA Goddard Space Flight Center, Code 616, Greenbelt, MD 20771, USAScience Systems and Applications, Inc., Greenbelt, MD 20706, USANASA Goddard Space Flight Center, Code 616, Greenbelt, MD 20771, USANASA Goddard Space Flight Center, Code 616, Greenbelt, MD 20771, USAPhysics Department, University of Maryland, Baltimore County, Baltimore, MD 21250, USANASA Goddard Institute for Space Studies, New York, NY 10025, USAPhysics Department, University of Maryland, Baltimore County, Baltimore, MD 21250, USAPhysics Department, University of Maryland, Baltimore County, Baltimore, MD 21250, USA<p>Multi-angle polarimetric (MAP) measurements contain rich information for characterization of aerosol microphysical and optical properties that can be used to improve atmospheric correction in ocean color remote sensing. Advanced retrieval algorithms have been developed to obtain multiple geophysical parameters in the atmosphere–ocean system, although uncertainty correlation among measurements is generally ignored due to lack of knowledge on its strength and characterization. In this work, we provide a practical framework to evaluate the impact of the angular uncertainty correlation from retrieval results and a method to estimate correlation strength from retrieval fitting residuals. The Fast Multi-Angular Polarimetric Ocean coLor (FastMAPOL) retrieval algorithm, based on neural-network forward models, is used to conduct the retrievals and uncertainty quantification. In addition, we also discuss a flexible approach to include a correlated uncertainty model in the retrieval algorithm. The impact of angular correlation on retrieval uncertainties is discussed based on synthetic Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) and Hyper-Angular Rainbow Polarimeter 2 (HARP2) measurements using a Monte Carlo uncertainty estimation method. Correlation properties are estimated using autocorrelation functions based on the fitting residuals from both synthetic AirHARP and HARP2 data and real AirHARP measurement, with the resulting angular correlation parameters found to be larger than 0.9 and 0.8 for reflectance and degree of linear polarization (DoLP), respectively, which correspond to correlation angles of 10 and 5<span class="inline-formula"><sup>∘</sup></span>. Although this study focuses on angular correlation from HARP instruments, the methodology to study and quantify uncertainty correlation is also applicable to other instruments with angular, spectral, or spatial correlations and can help inform laboratory calibration and characterization of the instrument uncertainty structure.</p>https://amt.copernicus.org/articles/16/2067/2023/amt-16-2067-2023.pdf
spellingShingle M. Gao
M. Gao
K. Knobelspiesse
B. A. Franz
P.-W. Zhai
B. Cairns
X. Xu
J. V. Martins
The impact and estimation of uncertainty correlation for multi-angle polarimetric remote sensing of aerosols and ocean color
Atmospheric Measurement Techniques
title The impact and estimation of uncertainty correlation for multi-angle polarimetric remote sensing of aerosols and ocean color
title_full The impact and estimation of uncertainty correlation for multi-angle polarimetric remote sensing of aerosols and ocean color
title_fullStr The impact and estimation of uncertainty correlation for multi-angle polarimetric remote sensing of aerosols and ocean color
title_full_unstemmed The impact and estimation of uncertainty correlation for multi-angle polarimetric remote sensing of aerosols and ocean color
title_short The impact and estimation of uncertainty correlation for multi-angle polarimetric remote sensing of aerosols and ocean color
title_sort impact and estimation of uncertainty correlation for multi angle polarimetric remote sensing of aerosols and ocean color
url https://amt.copernicus.org/articles/16/2067/2023/amt-16-2067-2023.pdf
work_keys_str_mv AT mgao theimpactandestimationofuncertaintycorrelationformultianglepolarimetricremotesensingofaerosolsandoceancolor
AT mgao theimpactandestimationofuncertaintycorrelationformultianglepolarimetricremotesensingofaerosolsandoceancolor
AT kknobelspiesse theimpactandestimationofuncertaintycorrelationformultianglepolarimetricremotesensingofaerosolsandoceancolor
AT bafranz theimpactandestimationofuncertaintycorrelationformultianglepolarimetricremotesensingofaerosolsandoceancolor
AT pwzhai theimpactandestimationofuncertaintycorrelationformultianglepolarimetricremotesensingofaerosolsandoceancolor
AT bcairns theimpactandestimationofuncertaintycorrelationformultianglepolarimetricremotesensingofaerosolsandoceancolor
AT xxu theimpactandestimationofuncertaintycorrelationformultianglepolarimetricremotesensingofaerosolsandoceancolor
AT jvmartins theimpactandestimationofuncertaintycorrelationformultianglepolarimetricremotesensingofaerosolsandoceancolor
AT mgao impactandestimationofuncertaintycorrelationformultianglepolarimetricremotesensingofaerosolsandoceancolor
AT mgao impactandestimationofuncertaintycorrelationformultianglepolarimetricremotesensingofaerosolsandoceancolor
AT kknobelspiesse impactandestimationofuncertaintycorrelationformultianglepolarimetricremotesensingofaerosolsandoceancolor
AT bafranz impactandestimationofuncertaintycorrelationformultianglepolarimetricremotesensingofaerosolsandoceancolor
AT pwzhai impactandestimationofuncertaintycorrelationformultianglepolarimetricremotesensingofaerosolsandoceancolor
AT bcairns impactandestimationofuncertaintycorrelationformultianglepolarimetricremotesensingofaerosolsandoceancolor
AT xxu impactandestimationofuncertaintycorrelationformultianglepolarimetricremotesensingofaerosolsandoceancolor
AT jvmartins impactandestimationofuncertaintycorrelationformultianglepolarimetricremotesensingofaerosolsandoceancolor