Soft‐switching non‐isolated high step‐up three‐level boost converter using single magnetic element

Abstract Here, a soft switched three‐level boost converter with high voltage gain is proposed which is suitable for high step‐up applications with wide output power range. In this converter, a ZVT auxiliary circuit is used which provides soft switching in a wide range of output power independent of...

Full description

Bibliographic Details
Main Authors: Hamed Moradmand Jazi, Mahmoud Fekri, Milad Keshani, Ramin Rahimzadeh Khorasani, Ehsan Adib, Patrick Wheeler, Herminio‐Martinez Garcia, Guillermo Velasco‐Quesada
Format: Article
Language:English
Published: Wiley 2021-11-01
Series:IET Power Electronics
Subjects:
Online Access:https://doi.org/10.1049/pel2.12183
Description
Summary:Abstract Here, a soft switched three‐level boost converter with high voltage gain is proposed which is suitable for high step‐up applications with wide output power range. In this converter, a ZVT auxiliary circuit is used which provides soft switching in a wide range of output power independent of load variation. Utilizing coupled‐inductors with one magnetic core removes extra auxiliary core in the soft switching circuit and provides high voltage gain in conjunction with size reduction. Also, the secondary and tertiary leakage inductances of the coupled‐inductors minimize the reverse recovery problem of the output diodes. Due to its three‐level structure, it has very low voltage stress over semiconductor elements in comparison to the existing interleaved structures, resulting in using MOSFETs with low on‐resistance and thus lower conduction losses and cost. Operating modes as well as analytical analysis of the proposed converter are discussed. Finally, in order to validate the proposed converter performance, experimental results from a 200‐W laboratory prototype are presented.
ISSN:1755-4535
1755-4543