O/W Pickering Emulsions Stabilized with Cellulose Nanofibrils Produced through Different Mechanical Treatments

This work aimed at studying the stabilization of O/W Pickering emulsions using nanosized cellulosic material, produced from raw cellulose or tomato pomace through different mechanical treatments, such as ball milling (BM) and high-pressure homogenization (HPH). The cellulose nanofibrils obtained via...

Full description

Bibliographic Details
Main Authors: Annachiara Pirozzi, Roberta Capuano, Roberto Avolio, Gennaro Gentile, Giovanna Ferrari, Francesco Donsì
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/10/8/1886
Description
Summary:This work aimed at studying the stabilization of O/W Pickering emulsions using nanosized cellulosic material, produced from raw cellulose or tomato pomace through different mechanical treatments, such as ball milling (BM) and high-pressure homogenization (HPH). The cellulose nanofibrils obtained via HPH, which exhibited longer fibers with higher flexibility than those obtained via ball milling, are characterized by lower interfacial tension values and higher viscosity, as well as better emulsion stabilization capability. Emulsion stability tests, carried out at 4 °C for 28 d or under centrifugation at different pH values (2.0, 7.0, and 12.0), revealed that HPH-treated cellulose limited the occurrence of coalescence phenomena and significantly slowed down gravitational separation in comparison with BM-treated cellulose. HPH-treated cellulose was responsible for the formation of a 3D network structure in the continuous phase, entrapping the oil droplets also due to the affinity with the cellulose nanofibrils, whereas BM-treated cellulose produced fibers with a more compact structure, which did adequately cover the oil droplets. HPH-treated tomato pomace gave similar results in terms of particle morphology and interfacial tension, and slightly lower emulsion stabilization capability than HPH-treated cellulose, suggesting that the used mechanical disruption process does not require cellulose isolation for its efficient defibrillation.
ISSN:2304-8158