Modeling and simulation to determine the thermal efficiency of a parabolic solar trough collector system
This study presents a reduced order mathematical model to calculate the heat transfer in steady state in a parabolic trough collector, in which the radial and axial temperature profile of the system is obtained. To solve the model an iterative calculation sequence is used and implemented in Python s...
Hoofdauteurs: | , , , |
---|---|
Formaat: | Artikel |
Taal: | English |
Gepubliceerd in: |
Elsevier
2019-12-01
|
Reeks: | Case Studies in Thermal Engineering |
Online toegang: | http://www.sciencedirect.com/science/article/pii/S2214157X19303405 |
_version_ | 1828771759149547520 |
---|---|
author | Sergio Quezada–García Heriberto Sánchez–Mora Marco A. Polo–Labarrios Ricardo I. Cázares–Ramírez |
author_facet | Sergio Quezada–García Heriberto Sánchez–Mora Marco A. Polo–Labarrios Ricardo I. Cázares–Ramírez |
author_sort | Sergio Quezada–García |
collection | DOAJ |
description | This study presents a reduced order mathematical model to calculate the heat transfer in steady state in a parabolic trough collector, in which the radial and axial temperature profile of the system is obtained. To solve the model an iterative calculation sequence is used and implemented in Python software, in additional OpenGL is used to generate a schematic visualization of the system. Next, results are validated with data from two different heat-carrier fluids published in the literature, obtaining a maximum relative error less than 10%. The model is used to determine the thermal efficiency using water, thermal oil and nanofluids as heat-carrier fluids. Results show that the thermal efficiency of the parabolic trough collector is higher with nanofluids containing a higher volume fraction of nanoparticles: with a volume fraction of 0.04 and 0.02, the thermal efficiency is of 80% and 79%, respectively. The thermal oil has the lowest efficiency with a maximum efficiency of 76%. The nanofluids allow working at low-pressure levels in the parabolic trough collector compared to pressurized water. Keywords: Solar energy, Parabolic solar trough collector, Nanofluids, Heat transfer in steady state, Reduce order mathematical model |
first_indexed | 2024-12-11T14:31:15Z |
format | Article |
id | doaj.art-df34ab2d0ff84e5293c87d2433cd7eff |
institution | Directory Open Access Journal |
issn | 2214-157X |
language | English |
last_indexed | 2024-12-11T14:31:15Z |
publishDate | 2019-12-01 |
publisher | Elsevier |
record_format | Article |
series | Case Studies in Thermal Engineering |
spelling | doaj.art-df34ab2d0ff84e5293c87d2433cd7eff2022-12-22T01:02:24ZengElsevierCase Studies in Thermal Engineering2214-157X2019-12-0116Modeling and simulation to determine the thermal efficiency of a parabolic solar trough collector systemSergio Quezada–García0Heriberto Sánchez–Mora1Marco A. Polo–Labarrios2Ricardo I. Cázares–Ramírez3Universidad Nacional Autónoma de México, Facultad de Ingeniería, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, 04510, Mexico; Corresponding author.Universidad Nacional Autónoma de México, Facultad de Ingeniería, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, 04510, MexicoUniversidad Autónoma Metropolitana–Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe Cuajimalpa, Cuajimalpa de Morelos, 05348, MexicoUniversidad Autónoma Metropolitana–Iztapalapa, Av. San Rafael Atlixco 186, Leyes Reforma 1ra Sección, Iztapalapa, 09340, MexicoThis study presents a reduced order mathematical model to calculate the heat transfer in steady state in a parabolic trough collector, in which the radial and axial temperature profile of the system is obtained. To solve the model an iterative calculation sequence is used and implemented in Python software, in additional OpenGL is used to generate a schematic visualization of the system. Next, results are validated with data from two different heat-carrier fluids published in the literature, obtaining a maximum relative error less than 10%. The model is used to determine the thermal efficiency using water, thermal oil and nanofluids as heat-carrier fluids. Results show that the thermal efficiency of the parabolic trough collector is higher with nanofluids containing a higher volume fraction of nanoparticles: with a volume fraction of 0.04 and 0.02, the thermal efficiency is of 80% and 79%, respectively. The thermal oil has the lowest efficiency with a maximum efficiency of 76%. The nanofluids allow working at low-pressure levels in the parabolic trough collector compared to pressurized water. Keywords: Solar energy, Parabolic solar trough collector, Nanofluids, Heat transfer in steady state, Reduce order mathematical modelhttp://www.sciencedirect.com/science/article/pii/S2214157X19303405 |
spellingShingle | Sergio Quezada–García Heriberto Sánchez–Mora Marco A. Polo–Labarrios Ricardo I. Cázares–Ramírez Modeling and simulation to determine the thermal efficiency of a parabolic solar trough collector system Case Studies in Thermal Engineering |
title | Modeling and simulation to determine the thermal efficiency of a parabolic solar trough collector system |
title_full | Modeling and simulation to determine the thermal efficiency of a parabolic solar trough collector system |
title_fullStr | Modeling and simulation to determine the thermal efficiency of a parabolic solar trough collector system |
title_full_unstemmed | Modeling and simulation to determine the thermal efficiency of a parabolic solar trough collector system |
title_short | Modeling and simulation to determine the thermal efficiency of a parabolic solar trough collector system |
title_sort | modeling and simulation to determine the thermal efficiency of a parabolic solar trough collector system |
url | http://www.sciencedirect.com/science/article/pii/S2214157X19303405 |
work_keys_str_mv | AT sergioquezadagarcia modelingandsimulationtodeterminethethermalefficiencyofaparabolicsolartroughcollectorsystem AT heribertosanchezmora modelingandsimulationtodeterminethethermalefficiencyofaparabolicsolartroughcollectorsystem AT marcoapololabarrios modelingandsimulationtodeterminethethermalefficiencyofaparabolicsolartroughcollectorsystem AT ricardoicazaresramirez modelingandsimulationtodeterminethethermalefficiencyofaparabolicsolartroughcollectorsystem |