Modeling and simulation to determine the thermal efficiency of a parabolic solar trough collector system

This study presents a reduced order mathematical model to calculate the heat transfer in steady state in a parabolic trough collector, in which the radial and axial temperature profile of the system is obtained. To solve the model an iterative calculation sequence is used and implemented in Python s...

Volledige beschrijving

Bibliografische gegevens
Hoofdauteurs: Sergio Quezada–García, Heriberto Sánchez–Mora, Marco A. Polo–Labarrios, Ricardo I. Cázares–Ramírez
Formaat: Artikel
Taal:English
Gepubliceerd in: Elsevier 2019-12-01
Reeks:Case Studies in Thermal Engineering
Online toegang:http://www.sciencedirect.com/science/article/pii/S2214157X19303405
_version_ 1828771759149547520
author Sergio Quezada–García
Heriberto Sánchez–Mora
Marco A. Polo–Labarrios
Ricardo I. Cázares–Ramírez
author_facet Sergio Quezada–García
Heriberto Sánchez–Mora
Marco A. Polo–Labarrios
Ricardo I. Cázares–Ramírez
author_sort Sergio Quezada–García
collection DOAJ
description This study presents a reduced order mathematical model to calculate the heat transfer in steady state in a parabolic trough collector, in which the radial and axial temperature profile of the system is obtained. To solve the model an iterative calculation sequence is used and implemented in Python software, in additional OpenGL is used to generate a schematic visualization of the system. Next, results are validated with data from two different heat-carrier fluids published in the literature, obtaining a maximum relative error less than 10%. The model is used to determine the thermal efficiency using water, thermal oil and nanofluids as heat-carrier fluids. Results show that the thermal efficiency of the parabolic trough collector is higher with nanofluids containing a higher volume fraction of nanoparticles: with a volume fraction of 0.04 and 0.02, the thermal efficiency is of 80% and 79%, respectively. The thermal oil has the lowest efficiency with a maximum efficiency of 76%. The nanofluids allow working at low-pressure levels in the parabolic trough collector compared to pressurized water. Keywords: Solar energy, Parabolic solar trough collector, Nanofluids, Heat transfer in steady state, Reduce order mathematical model
first_indexed 2024-12-11T14:31:15Z
format Article
id doaj.art-df34ab2d0ff84e5293c87d2433cd7eff
institution Directory Open Access Journal
issn 2214-157X
language English
last_indexed 2024-12-11T14:31:15Z
publishDate 2019-12-01
publisher Elsevier
record_format Article
series Case Studies in Thermal Engineering
spelling doaj.art-df34ab2d0ff84e5293c87d2433cd7eff2022-12-22T01:02:24ZengElsevierCase Studies in Thermal Engineering2214-157X2019-12-0116Modeling and simulation to determine the thermal efficiency of a parabolic solar trough collector systemSergio Quezada–García0Heriberto Sánchez–Mora1Marco A. Polo–Labarrios2Ricardo I. Cázares–Ramírez3Universidad Nacional Autónoma de México, Facultad de Ingeniería, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, 04510, Mexico; Corresponding author.Universidad Nacional Autónoma de México, Facultad de Ingeniería, Av. Universidad 3000, Ciudad Universitaria, Coyoacán, 04510, MexicoUniversidad Autónoma Metropolitana–Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe Cuajimalpa, Cuajimalpa de Morelos, 05348, MexicoUniversidad Autónoma Metropolitana–Iztapalapa, Av. San Rafael Atlixco 186, Leyes Reforma 1ra Sección, Iztapalapa, 09340, MexicoThis study presents a reduced order mathematical model to calculate the heat transfer in steady state in a parabolic trough collector, in which the radial and axial temperature profile of the system is obtained. To solve the model an iterative calculation sequence is used and implemented in Python software, in additional OpenGL is used to generate a schematic visualization of the system. Next, results are validated with data from two different heat-carrier fluids published in the literature, obtaining a maximum relative error less than 10%. The model is used to determine the thermal efficiency using water, thermal oil and nanofluids as heat-carrier fluids. Results show that the thermal efficiency of the parabolic trough collector is higher with nanofluids containing a higher volume fraction of nanoparticles: with a volume fraction of 0.04 and 0.02, the thermal efficiency is of 80% and 79%, respectively. The thermal oil has the lowest efficiency with a maximum efficiency of 76%. The nanofluids allow working at low-pressure levels in the parabolic trough collector compared to pressurized water. Keywords: Solar energy, Parabolic solar trough collector, Nanofluids, Heat transfer in steady state, Reduce order mathematical modelhttp://www.sciencedirect.com/science/article/pii/S2214157X19303405
spellingShingle Sergio Quezada–García
Heriberto Sánchez–Mora
Marco A. Polo–Labarrios
Ricardo I. Cázares–Ramírez
Modeling and simulation to determine the thermal efficiency of a parabolic solar trough collector system
Case Studies in Thermal Engineering
title Modeling and simulation to determine the thermal efficiency of a parabolic solar trough collector system
title_full Modeling and simulation to determine the thermal efficiency of a parabolic solar trough collector system
title_fullStr Modeling and simulation to determine the thermal efficiency of a parabolic solar trough collector system
title_full_unstemmed Modeling and simulation to determine the thermal efficiency of a parabolic solar trough collector system
title_short Modeling and simulation to determine the thermal efficiency of a parabolic solar trough collector system
title_sort modeling and simulation to determine the thermal efficiency of a parabolic solar trough collector system
url http://www.sciencedirect.com/science/article/pii/S2214157X19303405
work_keys_str_mv AT sergioquezadagarcia modelingandsimulationtodeterminethethermalefficiencyofaparabolicsolartroughcollectorsystem
AT heribertosanchezmora modelingandsimulationtodeterminethethermalefficiencyofaparabolicsolartroughcollectorsystem
AT marcoapololabarrios modelingandsimulationtodeterminethethermalefficiencyofaparabolicsolartroughcollectorsystem
AT ricardoicazaresramirez modelingandsimulationtodeterminethethermalefficiencyofaparabolicsolartroughcollectorsystem