Multiple Sulfur Isotope Evidence for Bacterial Sulfate Reduction and Sulfate Disproportionation Operated in Mesoarchaean Rocks of the Karelian Craton
Sulfur isotope in sulfides from the Paleoarchean and the Neoarchean sedimentary rocks evidence microbial sulfur metabolism in Archean sulfur cycle. However, sulfur metabolism for the Mesoarchean interval is less obvious since evidence for a large range in sulfur isotope values has not yet been obser...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-09-01
|
Series: | Minerals |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-163X/12/9/1143 |
_version_ | 1797484504866095104 |
---|---|
author | Sergey V. Vysotskiy Tatyana A. Velivetskaya Aleksandr V. Ignatiev Aleksandr I. Slabunov Anna V. Aseeva |
author_facet | Sergey V. Vysotskiy Tatyana A. Velivetskaya Aleksandr V. Ignatiev Aleksandr I. Slabunov Anna V. Aseeva |
author_sort | Sergey V. Vysotskiy |
collection | DOAJ |
description | Sulfur isotope in sulfides from the Paleoarchean and the Neoarchean sedimentary rocks evidence microbial sulfur metabolism in Archean sulfur cycle. However, sulfur metabolism for the Mesoarchean interval is less obvious since evidence for a large range in sulfur isotope values has not yet been observed in Mesoarchean samples. We report the results of multiple sulfur isotope measurements for sulfide minerals from ~2.8 Ga sedimentary rocks in the southeastern part of the Karelian Craton. In situ isotope analysis of sulfide grains have been performed using a femtosecond laser-ablation fluorination method. Sulfide samples studied here yielded Δ<sup>33</sup>S values between −0.3 and +2.7‰ and δ<sup>34</sup>S values between −10 and +33‰. The Δ<sup>33</sup>S dataset was interpreted to indicate the incorporation of sulfur from two coexisting sulfur pools, photolytic sulfate and photolytically derived elemental sulfur. We suggest that the relative contributions of these Δ<sup>33</sup>S different pools to the pyritic sulfur could be controlled by the metabolic activity of coexisting sulfate-reducing and sulfur-disproportionating bacteria during pyrite formation. We therefore suggest the operation of different metabolic pathways of sulfur in Mesoarchean sedimentary environments. |
first_indexed | 2024-03-09T23:04:25Z |
format | Article |
id | doaj.art-df393b449d4d41a18007f0cda655442d |
institution | Directory Open Access Journal |
issn | 2075-163X |
language | English |
last_indexed | 2024-03-09T23:04:25Z |
publishDate | 2022-09-01 |
publisher | MDPI AG |
record_format | Article |
series | Minerals |
spelling | doaj.art-df393b449d4d41a18007f0cda655442d2023-11-23T17:56:12ZengMDPI AGMinerals2075-163X2022-09-01129114310.3390/min12091143Multiple Sulfur Isotope Evidence for Bacterial Sulfate Reduction and Sulfate Disproportionation Operated in Mesoarchaean Rocks of the Karelian CratonSergey V. Vysotskiy0Tatyana A. Velivetskaya1Aleksandr V. Ignatiev2Aleksandr I. Slabunov3Anna V. Aseeva4Far East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, RussiaFar East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, RussiaFar East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, RussiaKarelian Research Center, Institute of Geology, Russian Academy of Sciences, 185910 Petrozavodsk, RussiaFar East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, RussiaSulfur isotope in sulfides from the Paleoarchean and the Neoarchean sedimentary rocks evidence microbial sulfur metabolism in Archean sulfur cycle. However, sulfur metabolism for the Mesoarchean interval is less obvious since evidence for a large range in sulfur isotope values has not yet been observed in Mesoarchean samples. We report the results of multiple sulfur isotope measurements for sulfide minerals from ~2.8 Ga sedimentary rocks in the southeastern part of the Karelian Craton. In situ isotope analysis of sulfide grains have been performed using a femtosecond laser-ablation fluorination method. Sulfide samples studied here yielded Δ<sup>33</sup>S values between −0.3 and +2.7‰ and δ<sup>34</sup>S values between −10 and +33‰. The Δ<sup>33</sup>S dataset was interpreted to indicate the incorporation of sulfur from two coexisting sulfur pools, photolytic sulfate and photolytically derived elemental sulfur. We suggest that the relative contributions of these Δ<sup>33</sup>S different pools to the pyritic sulfur could be controlled by the metabolic activity of coexisting sulfate-reducing and sulfur-disproportionating bacteria during pyrite formation. We therefore suggest the operation of different metabolic pathways of sulfur in Mesoarchean sedimentary environments.https://www.mdpi.com/2075-163X/12/9/1143Mesoarcheanmultiple sulfur isotopesbacterial sulfate reductionsulfur disproportionation |
spellingShingle | Sergey V. Vysotskiy Tatyana A. Velivetskaya Aleksandr V. Ignatiev Aleksandr I. Slabunov Anna V. Aseeva Multiple Sulfur Isotope Evidence for Bacterial Sulfate Reduction and Sulfate Disproportionation Operated in Mesoarchaean Rocks of the Karelian Craton Minerals Mesoarchean multiple sulfur isotopes bacterial sulfate reduction sulfur disproportionation |
title | Multiple Sulfur Isotope Evidence for Bacterial Sulfate Reduction and Sulfate Disproportionation Operated in Mesoarchaean Rocks of the Karelian Craton |
title_full | Multiple Sulfur Isotope Evidence for Bacterial Sulfate Reduction and Sulfate Disproportionation Operated in Mesoarchaean Rocks of the Karelian Craton |
title_fullStr | Multiple Sulfur Isotope Evidence for Bacterial Sulfate Reduction and Sulfate Disproportionation Operated in Mesoarchaean Rocks of the Karelian Craton |
title_full_unstemmed | Multiple Sulfur Isotope Evidence for Bacterial Sulfate Reduction and Sulfate Disproportionation Operated in Mesoarchaean Rocks of the Karelian Craton |
title_short | Multiple Sulfur Isotope Evidence for Bacterial Sulfate Reduction and Sulfate Disproportionation Operated in Mesoarchaean Rocks of the Karelian Craton |
title_sort | multiple sulfur isotope evidence for bacterial sulfate reduction and sulfate disproportionation operated in mesoarchaean rocks of the karelian craton |
topic | Mesoarchean multiple sulfur isotopes bacterial sulfate reduction sulfur disproportionation |
url | https://www.mdpi.com/2075-163X/12/9/1143 |
work_keys_str_mv | AT sergeyvvysotskiy multiplesulfurisotopeevidenceforbacterialsulfatereductionandsulfatedisproportionationoperatedinmesoarchaeanrocksofthekareliancraton AT tatyanaavelivetskaya multiplesulfurisotopeevidenceforbacterialsulfatereductionandsulfatedisproportionationoperatedinmesoarchaeanrocksofthekareliancraton AT aleksandrvignatiev multiplesulfurisotopeevidenceforbacterialsulfatereductionandsulfatedisproportionationoperatedinmesoarchaeanrocksofthekareliancraton AT aleksandrislabunov multiplesulfurisotopeevidenceforbacterialsulfatereductionandsulfatedisproportionationoperatedinmesoarchaeanrocksofthekareliancraton AT annavaseeva multiplesulfurisotopeevidenceforbacterialsulfatereductionandsulfatedisproportionationoperatedinmesoarchaeanrocksofthekareliancraton |