Théorie cinétique de l’équilibre chimique

Willard Gibbs formulated in 1873 a mathematical function, the Gibbs energy, whose variation governs the perfect gas evolution. In 1895, Ludwig Boltzmann presented a microscopic description of the perfect gas in concordance with the phenomenological approach of Gibbs. The chemical thermodynamics has...

Full description

Bibliographic Details
Main Authors: Lazerges, Mathieu, Marque, Sylvain
Format: Article
Language:English
Published: Académie des sciences 2020-12-01
Series:Comptes Rendus. Chimie
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/chimie/articles/10.5802/crchim.40/
_version_ 1827785196036947968
author Lazerges, Mathieu
Marque, Sylvain
author_facet Lazerges, Mathieu
Marque, Sylvain
author_sort Lazerges, Mathieu
collection DOAJ
description Willard Gibbs formulated in 1873 a mathematical function, the Gibbs energy, whose variation governs the perfect gas evolution. In 1895, Ludwig Boltzmann presented a microscopic description of the perfect gas in concordance with the phenomenological approach of Gibbs. The chemical thermodynamics has been historically developed using the model of the perfect gas from the existence of the chemical potential postulated in 1876 by Gibbs. The chemical potential, a quantity ascribed to every chemical species, represents the driving force of a chemical reaction. Chemists and physicists use since the beginning of the 20th century Gibbs and Boltzmann model to express the evolution laws of chemical reactions and phase transitions. This model, which presents a weakness to describe certain systems so-called as not ideal systems, was gradually declined in numerous successive empirical models of complexities and increasing predictive performances but restricted to particular systems. A unified model of microscopic evolutions based on kinetics is presented in this manuscript which is a clearly-cut breakthrough with thermodynamic chemistry: the existence of the chemical potential is not recognized and the calorimetric entropy from the second law of thermodynamics, which is consistent for heat transfer prediction, is not consistent to predict microscopic evolutions. Kinetic entropy rising from this approach replaces calorimetric entropy in the function that governs chemical reactions and phases equilibria evolutions.
first_indexed 2024-03-11T16:14:41Z
format Article
id doaj.art-df3a65ed937e435fbda5185d6f04b8b3
institution Directory Open Access Journal
issn 1878-1543
language English
last_indexed 2024-03-11T16:14:41Z
publishDate 2020-12-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Chimie
spelling doaj.art-df3a65ed937e435fbda5185d6f04b8b32023-10-24T14:22:49ZengAcadémie des sciencesComptes Rendus. Chimie1878-15432020-12-0123844550310.5802/crchim.4010.5802/crchim.40Théorie cinétique de l’équilibre chimiqueLazerges, Mathieu0Marque, Sylvain1Unité de Technologies Chimiques et Biologiques pour la Santé, UMR 8258 CNRS, U 1022 INSERM. Paris Sciences Lettres, Chimie ParisTech, 11 rue Pierre et Marie Curie, 75005 Paris, France. Université de Paris, Faculté de Santé, Faculté de Pharmacie de Paris, 4 avenue de l’Observatoire, 75006 Paris, France; GeoRessources, UMR 7359 CNRS. Université de Lorraine, Faculté des Sciences et Techniques, rue Jacques Callot, 54506 Vandœuvre-lès-Nancy, FranceInstitut Lavoisier de Versailles, UMR 8180 CNRS, Université Paris-Saclay, Université de Versailles Saint Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035 Versailles, FranceWillard Gibbs formulated in 1873 a mathematical function, the Gibbs energy, whose variation governs the perfect gas evolution. In 1895, Ludwig Boltzmann presented a microscopic description of the perfect gas in concordance with the phenomenological approach of Gibbs. The chemical thermodynamics has been historically developed using the model of the perfect gas from the existence of the chemical potential postulated in 1876 by Gibbs. The chemical potential, a quantity ascribed to every chemical species, represents the driving force of a chemical reaction. Chemists and physicists use since the beginning of the 20th century Gibbs and Boltzmann model to express the evolution laws of chemical reactions and phase transitions. This model, which presents a weakness to describe certain systems so-called as not ideal systems, was gradually declined in numerous successive empirical models of complexities and increasing predictive performances but restricted to particular systems. A unified model of microscopic evolutions based on kinetics is presented in this manuscript which is a clearly-cut breakthrough with thermodynamic chemistry: the existence of the chemical potential is not recognized and the calorimetric entropy from the second law of thermodynamics, which is consistent for heat transfer prediction, is not consistent to predict microscopic evolutions. Kinetic entropy rising from this approach replaces calorimetric entropy in the function that governs chemical reactions and phases equilibria evolutions.https://comptes-rendus.academie-sciences.fr/chimie/articles/10.5802/crchim.40/<i>Boltzmann</i>CinétiqueCollisionEntropieÉquilibreSecond principeThermodynamique
spellingShingle Lazerges, Mathieu
Marque, Sylvain
Théorie cinétique de l’équilibre chimique
Comptes Rendus. Chimie
<i>Boltzmann</i>
Cinétique
Collision
Entropie
Équilibre
Second principe
Thermodynamique
title Théorie cinétique de l’équilibre chimique
title_full Théorie cinétique de l’équilibre chimique
title_fullStr Théorie cinétique de l’équilibre chimique
title_full_unstemmed Théorie cinétique de l’équilibre chimique
title_short Théorie cinétique de l’équilibre chimique
title_sort theorie cinetique de l equilibre chimique
topic <i>Boltzmann</i>
Cinétique
Collision
Entropie
Équilibre
Second principe
Thermodynamique
url https://comptes-rendus.academie-sciences.fr/chimie/articles/10.5802/crchim.40/
work_keys_str_mv AT lazergesmathieu theoriecinetiquedelequilibrechimique
AT marquesylvain theoriecinetiquedelequilibrechimique