Théorie cinétique de l’équilibre chimique
Willard Gibbs formulated in 1873 a mathematical function, the Gibbs energy, whose variation governs the perfect gas evolution. In 1895, Ludwig Boltzmann presented a microscopic description of the perfect gas in concordance with the phenomenological approach of Gibbs. The chemical thermodynamics has...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2020-12-01
|
Series: | Comptes Rendus. Chimie |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/chimie/articles/10.5802/crchim.40/ |
_version_ | 1827785196036947968 |
---|---|
author | Lazerges, Mathieu Marque, Sylvain |
author_facet | Lazerges, Mathieu Marque, Sylvain |
author_sort | Lazerges, Mathieu |
collection | DOAJ |
description | Willard Gibbs formulated in 1873 a mathematical function, the Gibbs energy, whose variation governs the perfect gas evolution. In 1895, Ludwig Boltzmann presented a microscopic description of the perfect gas in concordance with the phenomenological approach of Gibbs. The chemical thermodynamics has been historically developed using the model of the perfect gas from the existence of the chemical potential postulated in 1876 by Gibbs. The chemical potential, a quantity ascribed to every chemical species, represents the driving force of a chemical reaction. Chemists and physicists use since the beginning of the 20th century Gibbs and Boltzmann model to express the evolution laws of chemical reactions and phase transitions. This model, which presents a weakness to describe certain systems so-called as not ideal systems, was gradually declined in numerous successive empirical models of complexities and increasing predictive performances but restricted to particular systems. A unified model of microscopic evolutions based on kinetics is presented in this manuscript which is a clearly-cut breakthrough with thermodynamic chemistry: the existence of the chemical potential is not recognized and the calorimetric entropy from the second law of thermodynamics, which is consistent for heat transfer prediction, is not consistent to predict microscopic evolutions. Kinetic entropy rising from this approach replaces calorimetric entropy in the function that governs chemical reactions and phases equilibria evolutions. |
first_indexed | 2024-03-11T16:14:41Z |
format | Article |
id | doaj.art-df3a65ed937e435fbda5185d6f04b8b3 |
institution | Directory Open Access Journal |
issn | 1878-1543 |
language | English |
last_indexed | 2024-03-11T16:14:41Z |
publishDate | 2020-12-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Chimie |
spelling | doaj.art-df3a65ed937e435fbda5185d6f04b8b32023-10-24T14:22:49ZengAcadémie des sciencesComptes Rendus. Chimie1878-15432020-12-0123844550310.5802/crchim.4010.5802/crchim.40Théorie cinétique de l’équilibre chimiqueLazerges, Mathieu0Marque, Sylvain1Unité de Technologies Chimiques et Biologiques pour la Santé, UMR 8258 CNRS, U 1022 INSERM. Paris Sciences Lettres, Chimie ParisTech, 11 rue Pierre et Marie Curie, 75005 Paris, France. Université de Paris, Faculté de Santé, Faculté de Pharmacie de Paris, 4 avenue de l’Observatoire, 75006 Paris, France; GeoRessources, UMR 7359 CNRS. Université de Lorraine, Faculté des Sciences et Techniques, rue Jacques Callot, 54506 Vandœuvre-lès-Nancy, FranceInstitut Lavoisier de Versailles, UMR 8180 CNRS, Université Paris-Saclay, Université de Versailles Saint Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035 Versailles, FranceWillard Gibbs formulated in 1873 a mathematical function, the Gibbs energy, whose variation governs the perfect gas evolution. In 1895, Ludwig Boltzmann presented a microscopic description of the perfect gas in concordance with the phenomenological approach of Gibbs. The chemical thermodynamics has been historically developed using the model of the perfect gas from the existence of the chemical potential postulated in 1876 by Gibbs. The chemical potential, a quantity ascribed to every chemical species, represents the driving force of a chemical reaction. Chemists and physicists use since the beginning of the 20th century Gibbs and Boltzmann model to express the evolution laws of chemical reactions and phase transitions. This model, which presents a weakness to describe certain systems so-called as not ideal systems, was gradually declined in numerous successive empirical models of complexities and increasing predictive performances but restricted to particular systems. A unified model of microscopic evolutions based on kinetics is presented in this manuscript which is a clearly-cut breakthrough with thermodynamic chemistry: the existence of the chemical potential is not recognized and the calorimetric entropy from the second law of thermodynamics, which is consistent for heat transfer prediction, is not consistent to predict microscopic evolutions. Kinetic entropy rising from this approach replaces calorimetric entropy in the function that governs chemical reactions and phases equilibria evolutions.https://comptes-rendus.academie-sciences.fr/chimie/articles/10.5802/crchim.40/<i>Boltzmann</i>CinétiqueCollisionEntropieÉquilibreSecond principeThermodynamique |
spellingShingle | Lazerges, Mathieu Marque, Sylvain Théorie cinétique de l’équilibre chimique Comptes Rendus. Chimie <i>Boltzmann</i> Cinétique Collision Entropie Équilibre Second principe Thermodynamique |
title | Théorie cinétique de l’équilibre chimique |
title_full | Théorie cinétique de l’équilibre chimique |
title_fullStr | Théorie cinétique de l’équilibre chimique |
title_full_unstemmed | Théorie cinétique de l’équilibre chimique |
title_short | Théorie cinétique de l’équilibre chimique |
title_sort | theorie cinetique de l equilibre chimique |
topic | <i>Boltzmann</i> Cinétique Collision Entropie Équilibre Second principe Thermodynamique |
url | https://comptes-rendus.academie-sciences.fr/chimie/articles/10.5802/crchim.40/ |
work_keys_str_mv | AT lazergesmathieu theoriecinetiquedelequilibrechimique AT marquesylvain theoriecinetiquedelequilibrechimique |