Photocatalytic Upcycling of Plastic Waste: Mechanism, Integrating Modus, and Selectivity

Plastics are ubiquitous and indispensable in our daily life because of their low cost, portability, durability, and processability. However, due to the overuse, short service life, and chemical inert character, the accumulated discarded plastics pose a great threat to the sustainable development of...

Full description

Bibliographic Details
Main Authors: Li Wang, Shan Jiang, Wenke Gui, Haoze Li, Jing Wu, Huaping Wang, Jianping Yang
Format: Article
Language:English
Published: Wiley-VCH 2023-10-01
Series:Small Structures
Subjects:
Online Access:https://doi.org/10.1002/sstr.202300142
Description
Summary:Plastics are ubiquitous and indispensable in our daily life because of their low cost, portability, durability, and processability. However, due to the overuse, short service life, and chemical inert character, the accumulated discarded plastics pose a great threat to the sustainable development of ecology and environment. Photocatalysis represents highly promising technology in transforming plastic wastes into value‐added products via green and mild method. In this perspective, the advantages of photocatalysis are discussed and compared with other catalysis technologies including thermal catalysis, electrocatalysis, and enzyme catalysis. Then the possible photocatalytic upcycling path of plastic wastes is clarified under different experimental conditions. The types of plastic wastes that can be upcycled by photocatalysis, the integrating modus between plastic wastes and the photocatalysts as well as the modulation of the product selectivity are also emphasized. Finally, the challenges and insights into the future development of photocatalytic plastic waste upcycling fields are presented. It is expected that this timely and critical review provides the instructive guidance for the design of photocatalysts with high efficiency and high selectivity toward plastic waste upcycling.
ISSN:2688-4062