Perfect Density Models Cannot Guarantee Anomaly Detection
Thanks to the tractability of their likelihood, several deep generative models show promise for seemingly straightforward but important applications like anomaly detection, uncertainty estimation, and active learning. However, the likelihood values empirically attributed to anomalies conflict with t...
Asıl Yazarlar: | Charline Le Lan, Laurent Dinh |
---|---|
Materyal Türü: | Makale |
Dil: | English |
Baskı/Yayın Bilgisi: |
MDPI AG
2021-12-01
|
Seri Bilgileri: | Entropy |
Konular: | |
Online Erişim: | https://www.mdpi.com/1099-4300/23/12/1690 |
Benzer Materyaller
-
GAN-Based Anomaly Detection Tailored for Classifiers
Yazar:: Ľubomír Králik, ve diğerleri
Baskı/Yayın Bilgisi: (2024-05-01) -
Deep Generative Models-Based Anomaly Detection for Spacecraft Control Systems
Yazar:: Hyojung Ahn, ve diğerleri
Baskı/Yayın Bilgisi: (2020-04-01) -
IWGAN: Anomaly Detection in Airport Based on Improved Wasserstein Generative Adversarial Network
Yazar:: Ko-Wei Huang, ve diğerleri
Baskı/Yayın Bilgisi: (2023-01-01) -
Enhancing Network Traffic Anomaly Detection: Leveraging Temporal Correlation Index in a Hybrid Framework
Yazar:: A. H. Nasreen Fathima, ve diğerleri
Baskı/Yayın Bilgisi: (2024-01-01) -
Multi-Channel Generative Framework and Supervised Learning for Anomaly Detection in Surveillance Videos
Yazar:: Tuan-Hung Vu, ve diğerleri
Baskı/Yayın Bilgisi: (2021-05-01)