Continuous isomorphisms onto separable groups
A condensation is a one-to-one continuous function onto. We give sufficient conditions for a Tychonoff space to admit a condensation onto a separable dense subspace of the Tychonoff cube Ic and discuss the differences that arise when we deal with topological groups, where condensation is understood...
Tác giả chính: | |
---|---|
Định dạng: | Bài viết |
Ngôn ngữ: | English |
Được phát hành: |
Universitat Politècnica de València
2012-10-01
|
Loạt: | Applied General Topology |
Những chủ đề: | |
Truy cập trực tuyến: | http://polipapers.upv.es/index.php/AGT/article/view/1625 |
Tóm tắt: | A condensation is a one-to-one continuous function onto. We give sufficient conditions for a Tychonoff space to admit a condensation onto a separable dense subspace of the Tychonoff cube Ic and discuss the differences that arise when we deal with topological groups, where condensation is understood as a continuous isomorphism. We also show that every Abelian group G with |G| 2c admits a separable, precompact, Hausdorff group topology, where c = 2!. |
---|---|
số ISSN: | 1576-9402 1989-4147 |