Continuous isomorphisms onto separable groups

A condensation is a one-to-one continuous function onto. We give sufficient conditions for a Tychonoff space to admit a condensation onto a separable dense subspace of the Tychonoff cube Ic and discuss the differences that arise when we deal with topological groups, where condensation is understood...

Description complète

Détails bibliographiques
Auteur principal: Luis Felipe Morales López
Format: Article
Langue:English
Publié: Universitat Politècnica de València 2012-10-01
Collection:Applied General Topology
Sujets:
Accès en ligne:http://polipapers.upv.es/index.php/AGT/article/view/1625
Description
Résumé:A condensation is a one-to-one continuous function onto. We give sufficient conditions for a Tychonoff space to admit a condensation onto a separable dense subspace of the Tychonoff cube Ic and discuss the differences that arise when we deal with topological groups, where condensation is understood as a continuous isomorphism. We also show that every Abelian group G with |G| 2c admits a separable, precompact, Hausdorff group topology, where c = 2!.
ISSN:1576-9402
1989-4147