Continuous isomorphisms onto separable groups

A condensation is a one-to-one continuous function onto. We give sufficient conditions for a Tychonoff space to admit a condensation onto a separable dense subspace of the Tychonoff cube Ic and discuss the differences that arise when we deal with topological groups, where condensation is understood...

ver descrição completa

Detalhes bibliográficos
Autor principal: Luis Felipe Morales López
Formato: Artigo
Idioma:English
Publicado em: Universitat Politècnica de València 2012-10-01
coleção:Applied General Topology
Assuntos:
Acesso em linha:http://polipapers.upv.es/index.php/AGT/article/view/1625
Descrição
Resumo:A condensation is a one-to-one continuous function onto. We give sufficient conditions for a Tychonoff space to admit a condensation onto a separable dense subspace of the Tychonoff cube Ic and discuss the differences that arise when we deal with topological groups, where condensation is understood as a continuous isomorphism. We also show that every Abelian group G with |G| 2c admits a separable, precompact, Hausdorff group topology, where c = 2!.
ISSN:1576-9402
1989-4147