Synthesis of Low-Cost, Bio-Based Novel Adsorbent Material Using Charge-Transfer Interaction for Water Treatment from Several Pollutants: Waste to Worth

Tea is the third most consumed beverage in Saudi Arabia (a country in the Middle East) after water and Arabian coffee. Hence, a large amount of consumed tea leaves is discarded as solid waste. Waste tea leaves (WTLs) have no commercial value and could be considered as an environmentally sustainable...

Full description

Bibliographic Details
Main Authors: Abdulrahman A. Almehizia, Mohamed A. Al-Omar, Ahmed M. Naglah, Hamad M. Alkahtani, Ahmad J. Obaidullah, Mashooq A. Bhat
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/13/4/619
_version_ 1827745471509037056
author Abdulrahman A. Almehizia
Mohamed A. Al-Omar
Ahmed M. Naglah
Hamad M. Alkahtani
Ahmad J. Obaidullah
Mashooq A. Bhat
author_facet Abdulrahman A. Almehizia
Mohamed A. Al-Omar
Ahmed M. Naglah
Hamad M. Alkahtani
Ahmad J. Obaidullah
Mashooq A. Bhat
author_sort Abdulrahman A. Almehizia
collection DOAJ
description Tea is the third most consumed beverage in Saudi Arabia (a country in the Middle East) after water and Arabian coffee. Hence, a large amount of consumed tea leaves is discarded as solid waste. Waste tea leaves (WTLs) have no commercial value and could be considered as an environmentally sustainable costless material. This work aimed to manufacture an adsorbent material from the discarded WTLs and charge-transfer (CT) interaction and use this adsorbent material effectively for the removal of different kinds of pollutants from water. The adsorbent material was manufactured in three steps. First, a CrFeO<sub>3</sub> metal composite was synthesized from the CT interaction between FeCl<sub>3</sub> and CrCl<sub>3</sub> with urea. Second, activated carbons were prepared from consumed WTLs using facile and clean treatments of pre-carbonization, and a simple potassium hydroxide (KOH) activation treatment. Finally, the adsorbent material was fabricated by grounding CrFeO<sub>3</sub> composite with the activated carbons in a 1:10 molar ratio (metal composite to activated carbons). The prepared materials were characterized spectroscopically and morphologically using FT-IR, XRD, SEM/EDX, and TEM analysis. The synthesized absorbent material was used to adsorb two organic dyes (Azocarmine G2; M1, and Methyl violet 2B; M2), and two commercial pesticides (Tiller 480SL; M3, and Acochem 25% WP; M4) from aqueous solution, and it showed promising adsorption efficacy. The minimum adsorbent material’s dosage to obtain a maximum removal efficiency (R%) for M1, M2, M3, and M4 removal from 100 mL solution (100 mg/L) was 0.11, 0.14, 0.13, and 0.12 g, respectively. The max R% for M1 (96.8%) was achieved in the first 45 min, the max R% for M2, 95.5%, was achieved during the first 55 min, and the max R% for M3 (96.4%) was achieved in the first 35 min, while the max R% for M4, 98.6%, was achieved during the first 35 min.
first_indexed 2024-03-11T05:07:30Z
format Article
id doaj.art-df527ef380074217ad88f94991534e24
institution Directory Open Access Journal
issn 2073-4352
language English
last_indexed 2024-03-11T05:07:30Z
publishDate 2023-04-01
publisher MDPI AG
record_format Article
series Crystals
spelling doaj.art-df527ef380074217ad88f94991534e242023-11-17T18:51:07ZengMDPI AGCrystals2073-43522023-04-0113461910.3390/cryst13040619Synthesis of Low-Cost, Bio-Based Novel Adsorbent Material Using Charge-Transfer Interaction for Water Treatment from Several Pollutants: Waste to WorthAbdulrahman A. Almehizia0Mohamed A. Al-Omar1Ahmed M. Naglah2Hamad M. Alkahtani3Ahmad J. Obaidullah4Mashooq A. Bhat5Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi ArabiaDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi ArabiaDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi ArabiaDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi ArabiaDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi ArabiaDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi ArabiaTea is the third most consumed beverage in Saudi Arabia (a country in the Middle East) after water and Arabian coffee. Hence, a large amount of consumed tea leaves is discarded as solid waste. Waste tea leaves (WTLs) have no commercial value and could be considered as an environmentally sustainable costless material. This work aimed to manufacture an adsorbent material from the discarded WTLs and charge-transfer (CT) interaction and use this adsorbent material effectively for the removal of different kinds of pollutants from water. The adsorbent material was manufactured in three steps. First, a CrFeO<sub>3</sub> metal composite was synthesized from the CT interaction between FeCl<sub>3</sub> and CrCl<sub>3</sub> with urea. Second, activated carbons were prepared from consumed WTLs using facile and clean treatments of pre-carbonization, and a simple potassium hydroxide (KOH) activation treatment. Finally, the adsorbent material was fabricated by grounding CrFeO<sub>3</sub> composite with the activated carbons in a 1:10 molar ratio (metal composite to activated carbons). The prepared materials were characterized spectroscopically and morphologically using FT-IR, XRD, SEM/EDX, and TEM analysis. The synthesized absorbent material was used to adsorb two organic dyes (Azocarmine G2; M1, and Methyl violet 2B; M2), and two commercial pesticides (Tiller 480SL; M3, and Acochem 25% WP; M4) from aqueous solution, and it showed promising adsorption efficacy. The minimum adsorbent material’s dosage to obtain a maximum removal efficiency (R%) for M1, M2, M3, and M4 removal from 100 mL solution (100 mg/L) was 0.11, 0.14, 0.13, and 0.12 g, respectively. The max R% for M1 (96.8%) was achieved in the first 45 min, the max R% for M2, 95.5%, was achieved during the first 55 min, and the max R% for M3 (96.4%) was achieved in the first 35 min, while the max R% for M4, 98.6%, was achieved during the first 35 min.https://www.mdpi.com/2073-4352/13/4/619charge-transfer interactionvacant orbital acceptormetal oxide compositewaste tea leavesactivated carbonsadsorption of contaminants
spellingShingle Abdulrahman A. Almehizia
Mohamed A. Al-Omar
Ahmed M. Naglah
Hamad M. Alkahtani
Ahmad J. Obaidullah
Mashooq A. Bhat
Synthesis of Low-Cost, Bio-Based Novel Adsorbent Material Using Charge-Transfer Interaction for Water Treatment from Several Pollutants: Waste to Worth
Crystals
charge-transfer interaction
vacant orbital acceptor
metal oxide composite
waste tea leaves
activated carbons
adsorption of contaminants
title Synthesis of Low-Cost, Bio-Based Novel Adsorbent Material Using Charge-Transfer Interaction for Water Treatment from Several Pollutants: Waste to Worth
title_full Synthesis of Low-Cost, Bio-Based Novel Adsorbent Material Using Charge-Transfer Interaction for Water Treatment from Several Pollutants: Waste to Worth
title_fullStr Synthesis of Low-Cost, Bio-Based Novel Adsorbent Material Using Charge-Transfer Interaction for Water Treatment from Several Pollutants: Waste to Worth
title_full_unstemmed Synthesis of Low-Cost, Bio-Based Novel Adsorbent Material Using Charge-Transfer Interaction for Water Treatment from Several Pollutants: Waste to Worth
title_short Synthesis of Low-Cost, Bio-Based Novel Adsorbent Material Using Charge-Transfer Interaction for Water Treatment from Several Pollutants: Waste to Worth
title_sort synthesis of low cost bio based novel adsorbent material using charge transfer interaction for water treatment from several pollutants waste to worth
topic charge-transfer interaction
vacant orbital acceptor
metal oxide composite
waste tea leaves
activated carbons
adsorption of contaminants
url https://www.mdpi.com/2073-4352/13/4/619
work_keys_str_mv AT abdulrahmanaalmehizia synthesisoflowcostbiobasednoveladsorbentmaterialusingchargetransferinteractionforwatertreatmentfromseveralpollutantswastetoworth
AT mohamedaalomar synthesisoflowcostbiobasednoveladsorbentmaterialusingchargetransferinteractionforwatertreatmentfromseveralpollutantswastetoworth
AT ahmedmnaglah synthesisoflowcostbiobasednoveladsorbentmaterialusingchargetransferinteractionforwatertreatmentfromseveralpollutantswastetoworth
AT hamadmalkahtani synthesisoflowcostbiobasednoveladsorbentmaterialusingchargetransferinteractionforwatertreatmentfromseveralpollutantswastetoworth
AT ahmadjobaidullah synthesisoflowcostbiobasednoveladsorbentmaterialusingchargetransferinteractionforwatertreatmentfromseveralpollutantswastetoworth
AT mashooqabhat synthesisoflowcostbiobasednoveladsorbentmaterialusingchargetransferinteractionforwatertreatmentfromseveralpollutantswastetoworth