A causal inference approach for estimating effects of non-pharmaceutical interventions during Covid-19 pandemic.
In response to the outbreak of the coronavirus disease 2019 (Covid-19), governments worldwide have introduced multiple restriction policies, known as non-pharmaceutical interventions (NPIs). However, the relative impact of control measures and the long-term causal contribution of each NPI are still...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2022-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0265289 |
_version_ | 1817969302683254784 |
---|---|
author | Vesna Barros Itay Manes Victor Akinwande Celia Cintas Osnat Bar-Shira Michal Ozery-Flato Yishai Shimoni Michal Rosen-Zvi |
author_facet | Vesna Barros Itay Manes Victor Akinwande Celia Cintas Osnat Bar-Shira Michal Ozery-Flato Yishai Shimoni Michal Rosen-Zvi |
author_sort | Vesna Barros |
collection | DOAJ |
description | In response to the outbreak of the coronavirus disease 2019 (Covid-19), governments worldwide have introduced multiple restriction policies, known as non-pharmaceutical interventions (NPIs). However, the relative impact of control measures and the long-term causal contribution of each NPI are still a topic of debate. We present a method to rigorously study the effectiveness of interventions on the rate of the time-varying reproduction number Rt and on human mobility, considered here as a proxy measure of policy adherence and social distancing. We frame our model using a causal inference approach to quantify the impact of five governmental interventions introduced until June 2020 to control the outbreak in 113 countries: confinement, school closure, mask wearing, cultural closure, and work restrictions. Our results indicate that mobility changes are more accurately predicted when compared to reproduction number. All NPIs, except for mask wearing, significantly affected human mobility trends. From these, schools and cultural closure mandates showed the largest effect on social distancing. We also found that closing schools, issuing face mask usage, and work-from-home mandates also caused a persistent reduction on Rt after their initiation, which was not observed with the other social distancing measures. Our results are robust and consistent across different model specifications and can shed more light on the impact of individual NPIs. |
first_indexed | 2024-04-13T20:19:33Z |
format | Article |
id | doaj.art-df5e895b8e77432d9d127a2d16619612 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-04-13T20:19:33Z |
publishDate | 2022-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-df5e895b8e77432d9d127a2d166196122022-12-22T02:31:35ZengPublic Library of Science (PLoS)PLoS ONE1932-62032022-01-01179e026528910.1371/journal.pone.0265289A causal inference approach for estimating effects of non-pharmaceutical interventions during Covid-19 pandemic.Vesna BarrosItay ManesVictor AkinwandeCelia CintasOsnat Bar-ShiraMichal Ozery-FlatoYishai ShimoniMichal Rosen-ZviIn response to the outbreak of the coronavirus disease 2019 (Covid-19), governments worldwide have introduced multiple restriction policies, known as non-pharmaceutical interventions (NPIs). However, the relative impact of control measures and the long-term causal contribution of each NPI are still a topic of debate. We present a method to rigorously study the effectiveness of interventions on the rate of the time-varying reproduction number Rt and on human mobility, considered here as a proxy measure of policy adherence and social distancing. We frame our model using a causal inference approach to quantify the impact of five governmental interventions introduced until June 2020 to control the outbreak in 113 countries: confinement, school closure, mask wearing, cultural closure, and work restrictions. Our results indicate that mobility changes are more accurately predicted when compared to reproduction number. All NPIs, except for mask wearing, significantly affected human mobility trends. From these, schools and cultural closure mandates showed the largest effect on social distancing. We also found that closing schools, issuing face mask usage, and work-from-home mandates also caused a persistent reduction on Rt after their initiation, which was not observed with the other social distancing measures. Our results are robust and consistent across different model specifications and can shed more light on the impact of individual NPIs.https://doi.org/10.1371/journal.pone.0265289 |
spellingShingle | Vesna Barros Itay Manes Victor Akinwande Celia Cintas Osnat Bar-Shira Michal Ozery-Flato Yishai Shimoni Michal Rosen-Zvi A causal inference approach for estimating effects of non-pharmaceutical interventions during Covid-19 pandemic. PLoS ONE |
title | A causal inference approach for estimating effects of non-pharmaceutical interventions during Covid-19 pandemic. |
title_full | A causal inference approach for estimating effects of non-pharmaceutical interventions during Covid-19 pandemic. |
title_fullStr | A causal inference approach for estimating effects of non-pharmaceutical interventions during Covid-19 pandemic. |
title_full_unstemmed | A causal inference approach for estimating effects of non-pharmaceutical interventions during Covid-19 pandemic. |
title_short | A causal inference approach for estimating effects of non-pharmaceutical interventions during Covid-19 pandemic. |
title_sort | causal inference approach for estimating effects of non pharmaceutical interventions during covid 19 pandemic |
url | https://doi.org/10.1371/journal.pone.0265289 |
work_keys_str_mv | AT vesnabarros acausalinferenceapproachforestimatingeffectsofnonpharmaceuticalinterventionsduringcovid19pandemic AT itaymanes acausalinferenceapproachforestimatingeffectsofnonpharmaceuticalinterventionsduringcovid19pandemic AT victorakinwande acausalinferenceapproachforestimatingeffectsofnonpharmaceuticalinterventionsduringcovid19pandemic AT celiacintas acausalinferenceapproachforestimatingeffectsofnonpharmaceuticalinterventionsduringcovid19pandemic AT osnatbarshira acausalinferenceapproachforestimatingeffectsofnonpharmaceuticalinterventionsduringcovid19pandemic AT michalozeryflato acausalinferenceapproachforestimatingeffectsofnonpharmaceuticalinterventionsduringcovid19pandemic AT yishaishimoni acausalinferenceapproachforestimatingeffectsofnonpharmaceuticalinterventionsduringcovid19pandemic AT michalrosenzvi acausalinferenceapproachforestimatingeffectsofnonpharmaceuticalinterventionsduringcovid19pandemic AT vesnabarros causalinferenceapproachforestimatingeffectsofnonpharmaceuticalinterventionsduringcovid19pandemic AT itaymanes causalinferenceapproachforestimatingeffectsofnonpharmaceuticalinterventionsduringcovid19pandemic AT victorakinwande causalinferenceapproachforestimatingeffectsofnonpharmaceuticalinterventionsduringcovid19pandemic AT celiacintas causalinferenceapproachforestimatingeffectsofnonpharmaceuticalinterventionsduringcovid19pandemic AT osnatbarshira causalinferenceapproachforestimatingeffectsofnonpharmaceuticalinterventionsduringcovid19pandemic AT michalozeryflato causalinferenceapproachforestimatingeffectsofnonpharmaceuticalinterventionsduringcovid19pandemic AT yishaishimoni causalinferenceapproachforestimatingeffectsofnonpharmaceuticalinterventionsduringcovid19pandemic AT michalrosenzvi causalinferenceapproachforestimatingeffectsofnonpharmaceuticalinterventionsduringcovid19pandemic |