Some Properties of the Nil-Graphs of Ideals of Commutative Rings
Let R be a commutative ring with identity and Nil(R) be the set of nilpotent elements of R. The nil-graph of ideals of R is defined as the graph AG_N(R) whose vertex set is {I:(0)and there exists a non-trivial ideal such that and two distinct vertices and are adjacent if and only if . Here, we s...
Main Author: | |
---|---|
Format: | Article |
Language: | fas |
Published: |
Kharazmi University
2022-12-01
|
Series: | پژوهشهای ریاضی |
Subjects: | |
Online Access: | http://mmr.khu.ac.ir/article-1-3071-en.html |
Summary: | Let R be a commutative ring with identity and Nil(R) be the set of nilpotent elements of R. The nil-graph of ideals of R is defined as the graph AG_N(R) whose vertex set is {I:(0)and there exists a non-trivial ideal such that and two distinct vertices and are adjacent if and only if . Here, we study conditions under which is complete or bipartite. Also, the independence number of is determined, where is a reduced ring. Finally, we classify Artinian rings whose nil-graphs of ideals have genus at most one. |
---|---|
ISSN: | 2588-2546 2588-2554 |