Lossless Image Coding Using Non-MMSE Algorithms to Calculate Linear Prediction Coefficients
This paper presents a lossless image compression method with a fast decoding time and flexible adjustment of coder parameters affecting its implementation complexity. A comparison of several approaches for computing non-MMSE prediction coefficients with different levels of complexity was made. The d...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-01-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/25/1/156 |
Summary: | This paper presents a lossless image compression method with a fast decoding time and flexible adjustment of coder parameters affecting its implementation complexity. A comparison of several approaches for computing non-MMSE prediction coefficients with different levels of complexity was made. The data modeling stage of the proposed codec was based on linear (calculated by the non-MMSE method) and non-linear (complemented by a context-dependent constant component removal block) predictions. Prediction error coding uses a two-stage compression: an adaptive Golomb code and a binary arithmetic code. The proposed solution results in 30% shorter decoding times and a lower bit average than competing solutions (by 7.9% relative to the popular JPEG-LS codec). |
---|---|
ISSN: | 1099-4300 |