Cellular disturbance and thermal stress response in mussels exposed to synthetic and natural microfibers
Textile microfibers (MFs) have natural (e.g. cotton, wool and silk) or synthetic origin (e.g. polyester and polyamide), and are increasingly documented in the marine environment. Knowledge on their biological effects in marine organisms is still limited, and virtually unexplored is their capability...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2022-08-01
|
Series: | Frontiers in Marine Science |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fmars.2022.981365/full |
_version_ | 1811340049494573056 |
---|---|
author | Lucia Pittura Alessandro Nardi Mariacristina Cocca Francesca De Falco Giuseppe d’Errico Carola Mazzoli Federica Mongera Maura Benedetti Stefania Gorbi Maurizio Avella Francesco Regoli |
author_facet | Lucia Pittura Alessandro Nardi Mariacristina Cocca Francesca De Falco Giuseppe d’Errico Carola Mazzoli Federica Mongera Maura Benedetti Stefania Gorbi Maurizio Avella Francesco Regoli |
author_sort | Lucia Pittura |
collection | DOAJ |
description | Textile microfibers (MFs) have natural (e.g. cotton, wool and silk) or synthetic origin (e.g. polyester and polyamide), and are increasingly documented in the marine environment. Knowledge on their biological effects in marine organisms is still limited, and virtually unexplored is their capability to modulate the responsiveness toward other stressors, including those of emerging relevance under global changes scenario. With such background, the aims of this study were to i) determine the ingestion and biological effects of MFs, discriminating between synthetic and natural ones, and ii) elucidate the possibility that MFs alter the responsiveness toward additional stressors occurring at a later stage, after exposure. Adult mussels Mytilus galloprovincialis were exposed for 14 days to a high but still environmentally realistic concentration of 50 MFs L-1 of either polyester (618 ± 367 µm length, 13 ± 1 µm diameter), polyamide (566 ± 500 µm length, 11 ± 1 µm in diameter) or cotton (412 ± 342 µm length, 16 ± 4 µm diameter). After the exposure, mussels were left for 7 days to recover at control temperature (23°C) or exposed to a heatwave condition (27°C). At the end of each phase (exposure – recovery – heat stress), MFs ingestion-elimination was evaluated, along with a wide panel of biological responses, including neuro-immune and antioxidant systems alterations, lipid metabolism and onset of cellular damages. Results were elaborated through a Weight of Evidence approach to provide synthetic hazard indices based on both the magnitude and toxicological relevance of observed variations. Beside limited differences in retention and elimination of MFs, biological analyses highlighted disturbance of the immune system and demand of protection toward oxidative insult, particularly evident in mussels exposed to synthetic-MFs. Carry-over effects were observed after 7 days of recovery: organisms that had been previously exposed to MFs showed a higher susceptibility of the neuroendocrine-immune system and lipid metabolism to thermal stress compared to un-exposed mussels. Overall, this study provided evidence of direct cellular effects of MFs, emphasizing differences between synthetic and natural ones, and highlighted their capability to modulate organisms’ susceptibility toward additional stressors, as those predicted for future changes in marine ecosystems. |
first_indexed | 2024-04-13T18:35:38Z |
format | Article |
id | doaj.art-dfad8958af3e47b289f141709b44a4d8 |
institution | Directory Open Access Journal |
issn | 2296-7745 |
language | English |
last_indexed | 2024-04-13T18:35:38Z |
publishDate | 2022-08-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Marine Science |
spelling | doaj.art-dfad8958af3e47b289f141709b44a4d82022-12-22T02:34:54ZengFrontiers Media S.A.Frontiers in Marine Science2296-77452022-08-01910.3389/fmars.2022.981365981365Cellular disturbance and thermal stress response in mussels exposed to synthetic and natural microfibersLucia Pittura0Alessandro Nardi1Mariacristina Cocca2Francesca De Falco3Giuseppe d’Errico4Carola Mazzoli5Federica Mongera6Maura Benedetti7Stefania Gorbi8Maurizio Avella9Francesco Regoli10Dipartmento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, ItalyDipartmento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, ItalyIstituto per i Polimeri Compositi e Biomateriali (IPCB), Consiglio Nazionale delle Ricerche (CNR), Pozzuoli, ItalyIstituto per i Polimeri Compositi e Biomateriali (IPCB), Consiglio Nazionale delle Ricerche (CNR), Pozzuoli, ItalyDipartmento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, ItalyDipartmento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, ItalyDipartmento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, ItalyDipartmento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, ItalyDipartmento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, ItalyIstituto per i Polimeri Compositi e Biomateriali (IPCB), Consiglio Nazionale delle Ricerche (CNR), Pozzuoli, ItalyDipartmento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, ItalyTextile microfibers (MFs) have natural (e.g. cotton, wool and silk) or synthetic origin (e.g. polyester and polyamide), and are increasingly documented in the marine environment. Knowledge on their biological effects in marine organisms is still limited, and virtually unexplored is their capability to modulate the responsiveness toward other stressors, including those of emerging relevance under global changes scenario. With such background, the aims of this study were to i) determine the ingestion and biological effects of MFs, discriminating between synthetic and natural ones, and ii) elucidate the possibility that MFs alter the responsiveness toward additional stressors occurring at a later stage, after exposure. Adult mussels Mytilus galloprovincialis were exposed for 14 days to a high but still environmentally realistic concentration of 50 MFs L-1 of either polyester (618 ± 367 µm length, 13 ± 1 µm diameter), polyamide (566 ± 500 µm length, 11 ± 1 µm in diameter) or cotton (412 ± 342 µm length, 16 ± 4 µm diameter). After the exposure, mussels were left for 7 days to recover at control temperature (23°C) or exposed to a heatwave condition (27°C). At the end of each phase (exposure – recovery – heat stress), MFs ingestion-elimination was evaluated, along with a wide panel of biological responses, including neuro-immune and antioxidant systems alterations, lipid metabolism and onset of cellular damages. Results were elaborated through a Weight of Evidence approach to provide synthetic hazard indices based on both the magnitude and toxicological relevance of observed variations. Beside limited differences in retention and elimination of MFs, biological analyses highlighted disturbance of the immune system and demand of protection toward oxidative insult, particularly evident in mussels exposed to synthetic-MFs. Carry-over effects were observed after 7 days of recovery: organisms that had been previously exposed to MFs showed a higher susceptibility of the neuroendocrine-immune system and lipid metabolism to thermal stress compared to un-exposed mussels. Overall, this study provided evidence of direct cellular effects of MFs, emphasizing differences between synthetic and natural ones, and highlighted their capability to modulate organisms’ susceptibility toward additional stressors, as those predicted for future changes in marine ecosystems.https://www.frontiersin.org/articles/10.3389/fmars.2022.981365/fullmicroplasticsmicrofibersthermal stressoxidative stresslipid metabolismimmune system |
spellingShingle | Lucia Pittura Alessandro Nardi Mariacristina Cocca Francesca De Falco Giuseppe d’Errico Carola Mazzoli Federica Mongera Maura Benedetti Stefania Gorbi Maurizio Avella Francesco Regoli Cellular disturbance and thermal stress response in mussels exposed to synthetic and natural microfibers Frontiers in Marine Science microplastics microfibers thermal stress oxidative stress lipid metabolism immune system |
title | Cellular disturbance and thermal stress response in mussels exposed to synthetic and natural microfibers |
title_full | Cellular disturbance and thermal stress response in mussels exposed to synthetic and natural microfibers |
title_fullStr | Cellular disturbance and thermal stress response in mussels exposed to synthetic and natural microfibers |
title_full_unstemmed | Cellular disturbance and thermal stress response in mussels exposed to synthetic and natural microfibers |
title_short | Cellular disturbance and thermal stress response in mussels exposed to synthetic and natural microfibers |
title_sort | cellular disturbance and thermal stress response in mussels exposed to synthetic and natural microfibers |
topic | microplastics microfibers thermal stress oxidative stress lipid metabolism immune system |
url | https://www.frontiersin.org/articles/10.3389/fmars.2022.981365/full |
work_keys_str_mv | AT luciapittura cellulardisturbanceandthermalstressresponseinmusselsexposedtosyntheticandnaturalmicrofibers AT alessandronardi cellulardisturbanceandthermalstressresponseinmusselsexposedtosyntheticandnaturalmicrofibers AT mariacristinacocca cellulardisturbanceandthermalstressresponseinmusselsexposedtosyntheticandnaturalmicrofibers AT francescadefalco cellulardisturbanceandthermalstressresponseinmusselsexposedtosyntheticandnaturalmicrofibers AT giuseppederrico cellulardisturbanceandthermalstressresponseinmusselsexposedtosyntheticandnaturalmicrofibers AT carolamazzoli cellulardisturbanceandthermalstressresponseinmusselsexposedtosyntheticandnaturalmicrofibers AT federicamongera cellulardisturbanceandthermalstressresponseinmusselsexposedtosyntheticandnaturalmicrofibers AT maurabenedetti cellulardisturbanceandthermalstressresponseinmusselsexposedtosyntheticandnaturalmicrofibers AT stefaniagorbi cellulardisturbanceandthermalstressresponseinmusselsexposedtosyntheticandnaturalmicrofibers AT maurizioavella cellulardisturbanceandthermalstressresponseinmusselsexposedtosyntheticandnaturalmicrofibers AT francescoregoli cellulardisturbanceandthermalstressresponseinmusselsexposedtosyntheticandnaturalmicrofibers |