Solvent-Free Catalytic Oxidation of Benzyl Alcohol over Au-Pd Bimetal Deposited on TiO2: Comparison of Rutile, Brookite, and Anatase
Abstract TiO2 (P25)-supported Au-Pd bimetal nanoparticles displayed excellent performance in the solvent-free benzyl alcohol catalytic oxidation. However, little research attention has been paid to investigate the effects of TiO2 form on the catalytic activity of Au-Pd/TiO2. In the present research,...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-12-01
|
Series: | Nanoscale Research Letters |
Subjects: | |
Online Access: | https://doi.org/10.1186/s11671-019-3211-8 |
Summary: | Abstract TiO2 (P25)-supported Au-Pd bimetal nanoparticles displayed excellent performance in the solvent-free benzyl alcohol catalytic oxidation. However, little research attention has been paid to investigate the effects of TiO2 form on the catalytic activity of Au-Pd/TiO2. In the present research, rutile, brookite, and anatase TiO2 were successfully synthesized and subsequently applied as the carrier to load Au-Pd nanoparticles by the deposition-precipitation method. The experimental results indicated that the benzyl alcohol conversion employing the rutile TiO2-supported Au-Pd catalyst is higher than the conversion of anatase and brookite TiO2-loaded Au-Pd catalysts. However, the Au-Pd/TiO2-rutile displayed the lowest and highest selectivity toward benzaldehyde and toluene, respectively. ICP-AES, XRD, XPS, and TEM were conducted to characterize these catalysts. The corresponding experimental results revealed that the excellent performance of Au-Pd/TiO2-rutile catalyst was attributed to both the smaller Au-Pd nanoparticle size distribution and the higher concentrations of Oα and Pd2+ species on the catalyst surface. In the recycle experiments, the Au-Pd/TiO2-rutile catalyst displayed lower reaction stability compared with the Au-Pd/TiO2-anatase and Au-Pd/TiO2-brookite, which might be due to the coverage of larger amount of aldehyde products on the surface. |
---|---|
ISSN: | 1931-7573 1556-276X |