Future Seasonal Drought Conditions over the CORDEX-MENA/Arab Domain

Seasonal drought is often overlooked because its impacts are less devasting than meteorological or hydrological drought. Nevertheless, short-term drought can have significant impacts on soil moisture content, agricultural crop yield, and sand and dust storms. Using data obtained from bias-corrected...

Full description

Bibliographic Details
Main Author: Marlene A. Tomaszkiewicz
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/12/7/856
Description
Summary:Seasonal drought is often overlooked because its impacts are less devasting than meteorological or hydrological drought. Nevertheless, short-term drought can have significant impacts on soil moisture content, agricultural crop yield, and sand and dust storms. Using data obtained from bias-corrected regional climate modelling (RCM) outputs, future seasonal drought is investigated over the water-scarce Arab domain using SPI-3. The climate modelling outputs include three downscaled mainframe GCMs downscaled using a single RCM for two climate scenarios: RCP4.5 and RCP8.5. Results across the region exhibit spatial and temporal variability. For example, Rift Valley, in the eastern sub-Sahara, projects less frequent and less severe drought, particularly during the winter (DJF) months. Conversely, the Morocco Highlands and adjacent Mediterranean coast signals a dramatic increase in drought by end-century during winter (DJF) and spring (MAM). Moderate increase in drought indicated in the greater Mashreq in spring (MAM) can be linked to sand and dust storm risk. Thirdly, autumn drought (SON) is linked to increased forest fire risk in the Levant. Projected increases in drought frequency and severity call for adaptation measures to reduce impacts.
ISSN:2073-4433