Research on Extraction of Compound Fault Characteristics for Rolling Bearings in Wind Turbines

Wind turbines work in strong background noise, and multiple faults often occur where features are mixed together and are easily misjudged. To extract composite fault of rolling bearings from wind turbines, a new hybrid approach was proposed based on multi-point optimal minimum entropy deconvolution...

Full description

Bibliographic Details
Main Authors: Ling Xiang, Hao Su, Ying Li
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/6/682
Description
Summary:Wind turbines work in strong background noise, and multiple faults often occur where features are mixed together and are easily misjudged. To extract composite fault of rolling bearings from wind turbines, a new hybrid approach was proposed based on multi-point optimal minimum entropy deconvolution adjusted (MOMEDA) and the 1.5-dimensional Teager kurtosis spectrum. The composite fault signal was deconvoluted using the MOMEDA method. The deconvoluted signal was analyzed by applying the 1.5-dimensional Teager kurtosis spectrum. Finally, the frequency characteristics were extracted for the bearing fault. A bearing composite fault signal with strong background noise was utilized to prove the validity of the method. Two actual cases on bearing fault detection were analyzed with wind turbines. The results show that the method is suitable for the diagnosis of wind turbine compound faults and can be applied to research on the health behavior of wind turbines.
ISSN:1099-4300