CLAHE-CapsNet: Efficient retina optical coherence tomography classification using capsule networks with contrast limited adaptive histogram equalization.

Manual detection of eye diseases using retina Optical Coherence Tomography (OCT) images by Ophthalmologists is time consuming, prone to errors and tedious. Previous researchers have developed a computer aided system using deep learning-based convolutional neural networks (CNNs) to aid in faster dete...

Full description

Bibliographic Details
Main Authors: Michael Opoku, Benjamin Asubam Weyori, Adebayo Felix Adekoya, Kwabena Adu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2023-01-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0288663&type=printable
Description
Summary:Manual detection of eye diseases using retina Optical Coherence Tomography (OCT) images by Ophthalmologists is time consuming, prone to errors and tedious. Previous researchers have developed a computer aided system using deep learning-based convolutional neural networks (CNNs) to aid in faster detection of the retina diseases. However, these methods find it difficult to achieve better classification performance due to noise in the OCT image. Moreover, the pooling operations in CNN reduce resolution of the image that limits the performance of the model. The contributions of the paper are in two folds. Firstly, this paper makes a comprehensive literature review to establish current-state-of-act methods successfully implemented in retina OCT image classifications. Additionally, this paper proposes a capsule network coupled with contrast limited adaptive histogram equalization (CLAHE-CapsNet) for retina OCT image classification. The CLAHE was implemented as layers to minimize the noise in the retina image for better performance of the model. A three-layer convolutional capsule network was designed with carefully chosen hyperparameters. The dataset used for this study was presented by University of California San Diego (UCSD). The dataset consists of 84,495 X-Ray images (JPEG) and 4 categories (NORMAL, CNV, DME, and DRUSEN). The images went through a grading system consisting of multiple layers of trained graders of expertise for verification and correction of image labels. Evaluation experiments were conducted and comparison of results was done with state-of-the-art models to find out the best performing model. The evaluation metrics; accuracy, sensitivity, precision, specificity, and AUC are used to determine the performance of the models. The evaluation results show that the proposed model achieves the best performing model of accuracies of 97.7%, 99.5%, and 99.3% on overall accuracy (OA), overall sensitivity (OS), and overall precision (OP), respectively. The results obtained indicate that the proposed model can be adopted and implemented to help ophthalmologists in detecting retina OCT diseases.
ISSN:1932-6203