Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings

Let R be a commutative unitary ring of prime characteristic p which is a direct product of indecomposable subrings and let G be a multiplicative Abelian group such that G0/Gp is nite. We characterize the isomorphism class of the unit group U(RG) of the group algebra RG. This strengthens recent resul...

Full description

Bibliographic Details
Main Author: Peter Danchev
Format: Article
Language:English
Published: Universidad de La Frontera 2012-01-01
Series:Cubo
Subjects:
Online Access:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462012000100005
Description
Summary:Let R be a commutative unitary ring of prime characteristic p which is a direct product of indecomposable subrings and let G be a multiplicative Abelian group such that G0/Gp is nite. We characterize the isomorphism class of the unit group U(RG) of the group algebra RG. This strengthens recent results due to Mollov-Nachev (Commun. Algebra, 2006) and Danchev (Studia Babes Bolyai - Mat., 2011).<br>Sea R un anillo conmutativo y unitario de característica prima p, que es producto directo de subanillos indescomponibles y sea G un grupo multiplicativo y abeliano tal que G0/Gp p es finito. Caracterizamos las clases de isomorfismo del grupo unitario U(RG) del álgebra del grupo RG. Estos fuertes y recientes resultados se deben a Mollov-Nachev (Commun. Algebra, 2006) and Danchev (Studia Babes Bolyai - Mat., 2011).
ISSN:0716-7776
0719-0646