Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings

Let R be a commutative unitary ring of prime characteristic p which is a direct product of indecomposable subrings and let G be a multiplicative Abelian group such that G0/Gp is nite. We characterize the isomorphism class of the unit group U(RG) of the group algebra RG. This strengthens recent resul...

Full description

Bibliographic Details
Main Author: Peter Danchev
Format: Article
Language:English
Published: Universidad de La Frontera 2012-01-01
Series:Cubo
Subjects:
Online Access:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462012000100005
_version_ 1818260169343107072
author Peter Danchev
author_facet Peter Danchev
author_sort Peter Danchev
collection DOAJ
description Let R be a commutative unitary ring of prime characteristic p which is a direct product of indecomposable subrings and let G be a multiplicative Abelian group such that G0/Gp is nite. We characterize the isomorphism class of the unit group U(RG) of the group algebra RG. This strengthens recent results due to Mollov-Nachev (Commun. Algebra, 2006) and Danchev (Studia Babes Bolyai - Mat., 2011).<br>Sea R un anillo conmutativo y unitario de característica prima p, que es producto directo de subanillos indescomponibles y sea G un grupo multiplicativo y abeliano tal que G0/Gp p es finito. Caracterizamos las clases de isomorfismo del grupo unitario U(RG) del álgebra del grupo RG. Estos fuertes y recientes resultados se deben a Mollov-Nachev (Commun. Algebra, 2006) and Danchev (Studia Babes Bolyai - Mat., 2011).
first_indexed 2024-12-12T18:27:04Z
format Article
id doaj.art-dfd2a888fe4a45869a8d890361975dce
institution Directory Open Access Journal
issn 0716-7776
0719-0646
language English
last_indexed 2024-12-12T18:27:04Z
publishDate 2012-01-01
publisher Universidad de La Frontera
record_format Article
series Cubo
spelling doaj.art-dfd2a888fe4a45869a8d890361975dce2022-12-22T00:16:00ZengUniversidad de La FronteraCubo0716-77760719-06462012-01-011414954Units in Abelian Group Algebras Over Direct Products of Indecomposable RingsPeter DanchevLet R be a commutative unitary ring of prime characteristic p which is a direct product of indecomposable subrings and let G be a multiplicative Abelian group such that G0/Gp is nite. We characterize the isomorphism class of the unit group U(RG) of the group algebra RG. This strengthens recent results due to Mollov-Nachev (Commun. Algebra, 2006) and Danchev (Studia Babes Bolyai - Mat., 2011).<br>Sea R un anillo conmutativo y unitario de característica prima p, que es producto directo de subanillos indescomponibles y sea G un grupo multiplicativo y abeliano tal que G0/Gp p es finito. Caracterizamos las clases de isomorfismo del grupo unitario U(RG) del álgebra del grupo RG. Estos fuertes y recientes resultados se deben a Mollov-Nachev (Commun. Algebra, 2006) and Danchev (Studia Babes Bolyai - Mat., 2011).http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462012000100005groupsringsgroup ringsindecomposable ringsunitsdirect decompositionsisomorphisms
spellingShingle Peter Danchev
Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings
Cubo
groups
rings
group rings
indecomposable rings
units
direct decompositions
isomorphisms
title Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings
title_full Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings
title_fullStr Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings
title_full_unstemmed Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings
title_short Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings
title_sort units in abelian group algebras over direct products of indecomposable rings
topic groups
rings
group rings
indecomposable rings
units
direct decompositions
isomorphisms
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462012000100005
work_keys_str_mv AT peterdanchev unitsinabeliangroupalgebrasoverdirectproductsofindecomposablerings