Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings
Let R be a commutative unitary ring of prime characteristic p which is a direct product of indecomposable subrings and let G be a multiplicative Abelian group such that G0/Gp is nite. We characterize the isomorphism class of the unit group U(RG) of the group algebra RG. This strengthens recent resul...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Universidad de La Frontera
2012-01-01
|
Series: | Cubo |
Subjects: | |
Online Access: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462012000100005 |
_version_ | 1818260169343107072 |
---|---|
author | Peter Danchev |
author_facet | Peter Danchev |
author_sort | Peter Danchev |
collection | DOAJ |
description | Let R be a commutative unitary ring of prime characteristic p which is a direct product of indecomposable subrings and let G be a multiplicative Abelian group such that G0/Gp is nite. We characterize the isomorphism class of the unit group U(RG) of the group algebra RG. This strengthens recent results due to Mollov-Nachev (Commun. Algebra, 2006) and Danchev (Studia Babes Bolyai - Mat., 2011).<br>Sea R un anillo conmutativo y unitario de característica prima p, que es producto directo de subanillos indescomponibles y sea G un grupo multiplicativo y abeliano tal que G0/Gp p es finito. Caracterizamos las clases de isomorfismo del grupo unitario U(RG) del álgebra del grupo RG. Estos fuertes y recientes resultados se deben a Mollov-Nachev (Commun. Algebra, 2006) and Danchev (Studia Babes Bolyai - Mat., 2011). |
first_indexed | 2024-12-12T18:27:04Z |
format | Article |
id | doaj.art-dfd2a888fe4a45869a8d890361975dce |
institution | Directory Open Access Journal |
issn | 0716-7776 0719-0646 |
language | English |
last_indexed | 2024-12-12T18:27:04Z |
publishDate | 2012-01-01 |
publisher | Universidad de La Frontera |
record_format | Article |
series | Cubo |
spelling | doaj.art-dfd2a888fe4a45869a8d890361975dce2022-12-22T00:16:00ZengUniversidad de La FronteraCubo0716-77760719-06462012-01-011414954Units in Abelian Group Algebras Over Direct Products of Indecomposable RingsPeter DanchevLet R be a commutative unitary ring of prime characteristic p which is a direct product of indecomposable subrings and let G be a multiplicative Abelian group such that G0/Gp is nite. We characterize the isomorphism class of the unit group U(RG) of the group algebra RG. This strengthens recent results due to Mollov-Nachev (Commun. Algebra, 2006) and Danchev (Studia Babes Bolyai - Mat., 2011).<br>Sea R un anillo conmutativo y unitario de característica prima p, que es producto directo de subanillos indescomponibles y sea G un grupo multiplicativo y abeliano tal que G0/Gp p es finito. Caracterizamos las clases de isomorfismo del grupo unitario U(RG) del álgebra del grupo RG. Estos fuertes y recientes resultados se deben a Mollov-Nachev (Commun. Algebra, 2006) and Danchev (Studia Babes Bolyai - Mat., 2011).http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462012000100005groupsringsgroup ringsindecomposable ringsunitsdirect decompositionsisomorphisms |
spellingShingle | Peter Danchev Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings Cubo groups rings group rings indecomposable rings units direct decompositions isomorphisms |
title | Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings |
title_full | Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings |
title_fullStr | Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings |
title_full_unstemmed | Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings |
title_short | Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings |
title_sort | units in abelian group algebras over direct products of indecomposable rings |
topic | groups rings group rings indecomposable rings units direct decompositions isomorphisms |
url | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462012000100005 |
work_keys_str_mv | AT peterdanchev unitsinabeliangroupalgebrasoverdirectproductsofindecomposablerings |