Maximum and antimaximum principles for the $p$-Laplacian with weighted Steklov boundary conditions
We study the maximum and antimaximum principles for the p-Laplacian operator under Steklov boundary conditions with an indefinite weight $$\displaylines{ -\Delta_p u + |u|^{p-2}u = 0 \quad \text{in }\Omega, \cr |\nabla u|^{p-2}\frac{\partial u}{\partial \nu} = \lambda m(x)|u|^{p-2}u + h(x) \qu...
Hlavní autoři: | , , |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
Texas State University
2020-03-01
|
Edice: | Electronic Journal of Differential Equations |
Témata: | |
On-line přístup: | http://ejde.math.txstate.edu/Volumes/2020/21/abstr.html |