PombeX: robust cell segmentation for fission yeast transillumination images.
Schizosaccharomyces pombe shares many genes and proteins with humans and is a good model for chromosome behavior and DNA dynamics, which can be analyzed by visualizing the behavior of fluorescently tagged proteins in vivo. Performing a genome-wide screen for changes in such proteins requires develop...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2013-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3865994?pdf=render |
_version_ | 1818138538619699200 |
---|---|
author | Jyh-Ying Peng Yen-Jen Chen Marc D Green Sarah A Sabatinos Susan L Forsburg Chun-Nan Hsu |
author_facet | Jyh-Ying Peng Yen-Jen Chen Marc D Green Sarah A Sabatinos Susan L Forsburg Chun-Nan Hsu |
author_sort | Jyh-Ying Peng |
collection | DOAJ |
description | Schizosaccharomyces pombe shares many genes and proteins with humans and is a good model for chromosome behavior and DNA dynamics, which can be analyzed by visualizing the behavior of fluorescently tagged proteins in vivo. Performing a genome-wide screen for changes in such proteins requires developing methods that automate analysis of a large amount of images, the first step of which requires robust segmentation of the cell. We developed a segmentation system, PombeX, that can segment cells from transmitted illumination images with focus gradient and varying contrast. Corrections for focus gradient are applied to the image to aid in accurate detection of cell membrane and cytoplasm pixels, which is used to generate initial contours for cells. Gradient vector flow snake evolution is used to obtain the final cell contours. Finally, a machine learning-based validation of cell contours removes most incorrect or spurious contours. Quantitative evaluations show overall good segmentation performance on a large set of images, regardless of differences in image quality, lighting condition, focus condition and phenotypic profile. Comparisons with recent related methods for yeast cells show that PombeX outperforms current methods, both in terms of segmentation accuracy and computational speed. |
first_indexed | 2024-12-11T10:13:47Z |
format | Article |
id | doaj.art-dfd936e7d678464e8f91e4a3a8e4d93a |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-11T10:13:47Z |
publishDate | 2013-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-dfd936e7d678464e8f91e4a3a8e4d93a2022-12-22T01:11:40ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-01812e8143410.1371/journal.pone.0081434PombeX: robust cell segmentation for fission yeast transillumination images.Jyh-Ying PengYen-Jen ChenMarc D GreenSarah A SabatinosSusan L ForsburgChun-Nan HsuSchizosaccharomyces pombe shares many genes and proteins with humans and is a good model for chromosome behavior and DNA dynamics, which can be analyzed by visualizing the behavior of fluorescently tagged proteins in vivo. Performing a genome-wide screen for changes in such proteins requires developing methods that automate analysis of a large amount of images, the first step of which requires robust segmentation of the cell. We developed a segmentation system, PombeX, that can segment cells from transmitted illumination images with focus gradient and varying contrast. Corrections for focus gradient are applied to the image to aid in accurate detection of cell membrane and cytoplasm pixels, which is used to generate initial contours for cells. Gradient vector flow snake evolution is used to obtain the final cell contours. Finally, a machine learning-based validation of cell contours removes most incorrect or spurious contours. Quantitative evaluations show overall good segmentation performance on a large set of images, regardless of differences in image quality, lighting condition, focus condition and phenotypic profile. Comparisons with recent related methods for yeast cells show that PombeX outperforms current methods, both in terms of segmentation accuracy and computational speed.http://europepmc.org/articles/PMC3865994?pdf=render |
spellingShingle | Jyh-Ying Peng Yen-Jen Chen Marc D Green Sarah A Sabatinos Susan L Forsburg Chun-Nan Hsu PombeX: robust cell segmentation for fission yeast transillumination images. PLoS ONE |
title | PombeX: robust cell segmentation for fission yeast transillumination images. |
title_full | PombeX: robust cell segmentation for fission yeast transillumination images. |
title_fullStr | PombeX: robust cell segmentation for fission yeast transillumination images. |
title_full_unstemmed | PombeX: robust cell segmentation for fission yeast transillumination images. |
title_short | PombeX: robust cell segmentation for fission yeast transillumination images. |
title_sort | pombex robust cell segmentation for fission yeast transillumination images |
url | http://europepmc.org/articles/PMC3865994?pdf=render |
work_keys_str_mv | AT jyhyingpeng pombexrobustcellsegmentationforfissionyeasttransilluminationimages AT yenjenchen pombexrobustcellsegmentationforfissionyeasttransilluminationimages AT marcdgreen pombexrobustcellsegmentationforfissionyeasttransilluminationimages AT sarahasabatinos pombexrobustcellsegmentationforfissionyeasttransilluminationimages AT susanlforsburg pombexrobustcellsegmentationforfissionyeasttransilluminationimages AT chunnanhsu pombexrobustcellsegmentationforfissionyeasttransilluminationimages |