Summary: | Abstract Accurate forecasting of changes in stock market indices can provide financial managers and individual investors with strategically valuable information. However, predicting the closing prices of stock indices remains a challenging task because stock price movements are characterized by high volatility and nonlinearity. This paper proposes a novel condensed polynomial neural network (CPNN) for the task of forecasting stock closing price indices. We developed a model that uses partial descriptions (PDs) and is limited to only two layers for the PNN architecture. The outputs of these PDs along with the original features are fed to a single output neuron, and the synaptic weight values and biases of the CPNN are optimized by a genetic algorithm. The proposed model was evaluated by predicting the next day’s closing price of five fast-growing stock indices: the BSE, DJIA, NASDAQ, FTSE, and TAIEX. In comparative testing, the proposed model proved its ability to provide closing price predictions with superior accuracy. Further, the Deibold-Mariano test justified the statistical significance of the model, establishing that this approach can be adopted as a competent financial forecasting tool.
|