Hydrogen Sulfide in Plants: Crosstalk with Other Signal Molecules in Response to Abiotic Stresses
Hydrogen sulfide (H<sub>2</sub>S) has recently been considered as a crucial gaseous transmitter occupying extensive roles in physiological and biochemical processes throughout the life of plant species. Furthermore, plenty of achievements have been announced regarding H<sub>2</s...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-11-01
|
Series: | International Journal of Molecular Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/1422-0067/22/21/12068 |
Summary: | Hydrogen sulfide (H<sub>2</sub>S) has recently been considered as a crucial gaseous transmitter occupying extensive roles in physiological and biochemical processes throughout the life of plant species. Furthermore, plenty of achievements have been announced regarding H<sub>2</sub>S working in combination with other signal molecules to mitigate environmental damage, such as nitric oxide (NO), abscisic acid (ABA), calcium ion (Ca<sup>2+</sup>), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), salicylic acid (SA), ethylene (ETH), jasmonic acid (JA), proline (Pro), and melatonin (MT). This review summarizes the current knowledge within the mechanism of H<sub>2</sub>S and the above signal compounds in response to abiotic stresses in plants, including maintaining cellular redox homeostasis, exchanging metal ion transport, regulating stomatal aperture, and altering gene expression and enzyme activities. The potential relationship between H<sub>2</sub>S and other signal transmitters is also proposed and discussed. |
---|---|
ISSN: | 1661-6596 1422-0067 |